发布时间:2024-01-12 15:34:33
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇计算机视觉概述范例,将为您的写作提供有力的支持和灵感!
【关键词】计算机视觉 交通领域 探究
近年来,随着科技水平的提高,计算机视觉技术逐渐被人们熟知并广泛应用。相较于其他传感器来说,视觉能获得更多的信息。因此,在我国交通领域中,也对计算机视觉技术进行研究完善,将计算机视觉技术应用在交通领域各个方面中,并取得了显著的成效。
1 计算机视觉的概述及基本体系结构
1.1 计算机视觉概述
通过使用计算机和相关设备,对生物视觉进行模拟的方式,就是计算机视觉。对采集到的图片或视频进行相应的技术处理,从而获得相应的三维信息场景,是计算机视觉的主要任务。
计算机视觉是一门学问,它就如何通过计算机和照相机的运用,使人们获得被拍摄对象的数据与信息所需等问题进行研究。简单的说,就是让计算机通过人们给其安装上的“大脑”和“眼睛”,对周围环境进行感知。
计算机视觉是一门综合性学科,在各个领域都有所作为,已经吸引了各个领域的研究者对其研究。同时,计算机视觉也是科学领域中一个具有重要挑战性的研究。
1.2 计算机视觉领域基本体系结构
提出第一个较为完善的视觉系统框架的是Marr,他从信息处理系统角度出发,结合图像处理、心理物理学等多领域的研究成果,提出被计算机视觉工作者基本接受的计算机视觉系统框架。在此基础上,研究者们针对视觉系统框架的各个角度、各个阶段、各个功能进行分析研究,得出了计算机视觉系统的基本体系结构,如图1。
2 计算机视觉在交通领域的应用
2.1 牌照识别
车辆的唯一身份是车辆牌照。在检测违规车辆、稽查被盗车辆和管理停车场工作中,车辆牌照的有效识别与检测具有重要的作用和应用价值。然而在实际应用工作中,虽然车牌识别技术相对成熟,但是由于受到拍摄角度、光照、天气等因素的影响,车牌识别技术仍需改善。车牌定位技术、车牌字符识别技术和车牌字符分割技术是组成车牌识别技术的重要部分。
2.2 车辆检测
目前,城市交通路口处红绿灯的间隔时间是固定不变的,但是受交通路口的位置不同、时间不同的影响,每个交通路口的交通流量也是持续变化的。此外,对于某些交通区域来说,公共资源的配备,比如交通警察、交通车辆的数量是有限的。如果能根据计算机视觉技术,对交通路口的不同时间、不同位置的交通情况进行分析计算,并对交通流量进行预测,有利于为交通警察缩短出警时间、为交通路口的红绿灯根据实际情况设置动态变化等技术提供支持。
2.3 统计公交乘客人数
城市公共交通的核心内容是城市公交调度问题,一个城市如何合理的解决公交调度问题,是缓解城市运力和运量矛盾,缓解城市交通紧张的有效措施。城市公交调度问题,为公交公司与乘客的平衡利益,为公交公司的经济利益和社会效益的提高做出了巨大的贡献。由于在不同的地域、不同的时间,公交客流会存在不均衡性,高峰时段的公交乘客过多,平峰时段的公交乘客过少,造成了公交调度不均衡问题,使有限资源浪费严重。在计算机视觉智能公交系统中,自动乘客计数技术是其关键技术。自动乘客计数技术,是对乘客上下车的时间和地点自动收集的最有效的技术之一。根据其收集到的数据,从时间和地点两方面对客流分析,为城市公交调度进行合理的安排。
2.4 对车道偏离程度和驾驶员工作状态判断
交通事故的发生率随着车辆数量的增加而增加。引发交通事故的重要因素之一就是驾驶员疲劳驾驶。据相关数据显示,因车道偏离导致的交通事故在40%以上。其中,驾驶员的疲劳驾驶就是导致车道偏离的主要原因。针对此种现象,为减少交通事故的发生,计算机视觉中车道偏离预警系统被研究开发并被广泛应用。针对驾驶员眨眼频率,利用计算机视觉对驾驶员面部进行图像处理和分析,再根据疲劳驾驶关注度与眨眼频率的关系,对驾驶员的工作状态进行判断。此外,根据道路识别技术,对车辆行驶状态进行检测,也是判断驾驶员工作状态的方法之一。这两种方法,是目前基于计算机视觉的基础上,检测驾驶员疲劳状态的有效方法。
2.5 路面破损检测
最常见的路面损坏方式就是裂缝。利用计算机视觉,及时发现路面破损情况,并在其裂缝程度严重之前进行修补,有利于节省维护成本,也避免出现路面坍塌,车辆凹陷的情况发生。利用计算机视觉进行路面检测,相较于之前人工视觉检测相比,有效提高了视觉检测的效率,增强了自动化程度,提高了安全性,为市民的出行安全带来了更高保障。
3 结论
本文从计算机视觉的概述,及计算机视觉基本体系结构,和计算机视觉在交通领域中的应用三面进行分析,可见计算机视觉在交通领域中的广泛应用,在交通领域中应用的有效性、显著性,以此可得计算机视觉在现展过程中的重要性。随着计算机视觉技术的越来越成熟,交通领域的检测管理一定会加严格,更加安全。
参考文献
[1]段里仁.智能交通系境在我国道路空通管理中的应用[J].北方工业时报,2015(06).
[2]王丰元.计算机视觉在建筑区间的应用实例分析[J].河北电力学报,2015(04).
[3]李钊称.主动测距技术在计算机数据分析中的作用探析[J].计算机应用,2015(08).
[4]马良红.三维物体影像的摄取与分析[J].中国公路学报,2014(05).
[5]朱学君,沈睿.关于计算机视觉在交通领域中的探讨[J].信息通信,2013(01):123.
[6]王大勇.关于计算机视觉在交通领域中的应用分析[J].科技与企业,2013(01):115.
作者简介
中图分类号:TP37 文献标识码:A 文章编号:1009-3044(2016)03-0242-02
计算机人工智能技术中的一项重要技术就是计算机视觉技术,这种技术主要是让计算机利用图像来实现认知环境信息的目的,这一目的的实现需要用到多种高尖端技术。近年来随着计算机技术以及计算机网络的普及与发展,计算机视觉技术也得到了较快发展,并且在实际生产与生活中的应用也越来越广泛。
1 计算机视觉技术概述
1.1 基本概念
计算机视觉技术主要研究计算机认知能力的一门技术,其具体主要是通过用摄像机代替人的眼睛,用电脑代替人的大脑,最终使计算机具备类似于人类的识别、判断以及记忆目标的功能,代替人类进行部分生产作业。人们目前研究的人工智能技术中的一项重要内容就是计算机视觉技术,通过研究计算机视觉技术可以让计算机拥有利用二维图像认知三维环境的功能。总的来说,计算机视觉技术是在图像与信号处理技术、概率分析统计、网络神经技术以及信息处理技术的基础上,利用计算机来分析、处理视觉信息的技术,它是现代社会新兴起的一门高新技术。
1.2 工作原理
在亮度满足要求的情况下,首先使用摄像机对具体事物的图像信息进行采集,利用网络把采集到的图像信息向计算机内部输送,然后在计算机系统内部处理加工图像信息会把事物的原始图像得到,随后利用图像处理技术进一步处理原始图像,获得优化质量效果之后的图像,分类与整理图像中有特征价值的信息,通过智能识别技术识别与描述提取到的图像信息特征,最后把得到的高层次的抽象信息存储起来,在进行识别事务时分析对比这些储存信息就可以实现事物的识别,这样视觉系统的基本任务也就完成了。其具体视觉系统如图1所示:
1.3理论框架
人类研究视觉技术虽然起步比较早,但取得较大进步是在20世纪80年代初伴随着视觉计算理论的出现。它的出现把研究视觉理论的策略问题解决了,视觉技术是一项特别复杂的信息处理过程,要想对视觉的本质准确完整的理解,必须从不同角度与层次研究与分析视觉本质。视觉计算理论研究层次大致可分为:计算机理论、算法以及实际执行。站在计算机理论的角度分析视觉技术,我们可知必须用要素图、维图、以及三维模型表像来描述视觉信息。
所以,可以把计算机视觉技术当做从三维环境图像中抽取、描述与解释信息的过程,其主要分析步骤可分为感觉、处理、描述、识别、解释等。若依据上述各过程实现需用到的方法与技术的复杂性划分层次,可大致把计算机视觉技术划分为:低层视觉处理、中层视觉处理、高层视觉处理三个层次。
2 计算机视觉技术在自动化中的应用
2.1 农业自动化中计算机视觉技术的应用
在农业自动化中应用计算机视觉技术可以全天候实时监测农作物的生长状况,便于科学管理农作物。还可以应用计算机视觉技术来检测农产品的质量,例如可以应用计算机监测技术来监测大多数蔬菜的质量,传统的人工检测蔬菜质量的方法,不仅费时费力,而且检测结果的准确性也不能很好的保证,在实际人工检测过程中还容易伤害蔬菜,可以通过利用计算机视觉技术来感应蔬菜自身释放的红外线、紫外线以及其他可见光的能量大小,然后和质量达标蔬菜的光线能量大小进行对比,根据这些对比结果可以把蔬菜质量的好坏准确判断出来,在蔬菜质量检测过程中应用计算机视觉技术,把传统的蔬菜检测方法完全颠覆了,极大的方便了农产品的质量检测,由此可见,计算机视觉技术在农业生产中有很高的使用与推广价值。
2.2 在工业自动化中计算机视觉技术的应用
计算机视觉技术在工业自动化应用的一个重要领域就是可以精密测量零件尺寸,其测量与被测对象的原理如图2所示。
光学系统、计算机处理系统以及CCD摄像头,是计算机检测系统的主要组成,被测物体由光源发出的平行光束进行照射,利用显微光学镜把待检测部位的轮廓图像呈现在摄像机的面阵CCD上,然后再通过计算机处理这些图像,进而把被测部位的轮廓位置信息获取下来,若被测对象是出现位移时,可通过两次重复测量,利用两次测量的位置差就可以得出,被测物体的位移量。
此外计算机视觉技术还可以应用于逆向工程中,应用3D数字化测量仪可以快速准确的测出现有工件轮廓的坐标值,同时还能构建曲面,保存成CAD或CAM图像,把这些图像送入CNC制作中心加工,便可制作出产品,这也就是所谓的逆向工程。由上述分析我们可知逆向工程要想实现,最关键的一环就是如何通过精密测量系统来测量样品的三围尺寸,获得各部位数据,进而做曲面处理进而加工生产。对于这一难题我可以通过利用线结构光测量物体表面轮廓技术来实现,器具体轮廓结构示意图如下图3所示。
这种测量方法的工作原理为:利用激光穿越平行、等距的振幅光栅组件,或直接采用干涉仪发出的干涉条纹,形成平面条纹结构光,再向物体表面投射,由于物体各表面的深度与曲率的不同,条纹会自动出现变化,然后再通过使用CCD摄像机对变形条纹进行拍摄。这样就可以把物体表面轮廓的变化情况分析出来。摄像机在拍摄图像的过程中,把图像信号转化为模拟信号,再转化为数字信号,然后经过传送再还原信号到图形处理系统,就得到三维轮廓图像。
在工业自动化中计算机视觉技术的深入广泛应用,不但使工业产品的生产质量得到了保障,而且跨越式的提高了工业产品的生产速度。如计算机视觉技术可以很好的检测产品包装质量,封口质量以及印刷质量等等,如我国重点指定的印刷造币机器的南京造币厂,由于货币制造印刷是由印刷造币机器来实现的,所以要严格要求其生产工艺,一丝一毫的生产差错都不允许存在,为了保障印刷制造出来的造币机器质量完全达标,必须严格精确检测生产出来的成品。在印刷造币机器的过程中要求要有非常高的计算机视觉技术,随着计算机视觉技术的不断进步,计算机视觉技术已经对印刷造币机器的需求完全满足了,实际的应用效果也非常理想,印刷造币机器在实际生产的过程中,南京造币厂把计算机视觉技术应用在了每个应刷造币机器最后的生产工序上,硬币受到重力下落的瞬间,计算机视觉技术可以瞬间采集图像的信息,准确拍摄硬币在下落过程中的图像,通过高速光纤传感器可以把硬币图像向计算机系统快速传输,利用计算机系统处理信息与识别信息的超强能力,可以及时识别硬币质量,经大量实践研究得出,在印刷造币机器上应用计算机视觉技术已经几乎没有检查差错现象的发生,由此可知,在工业自动化中计算机视觉技术的应用不但可行,而且发展空间还很大。
2.3 在医学自动化中计算机视觉技术的应用
在医学领域计算机视觉技术也得到了广泛应用,如医学中经常用到的CT图像以及X射线图都用到了计算机视觉技术,这些技术的广泛应用很大程度上方便了医生准确判断病人病情,另外,在生产药品的过程中,应用计算机视觉技术可以高效检测药品包装的合格与否,其基本流程是:传送装置先准确运输药品到指定位置,传送装置自身又可分为检测与分离两个区域,在传送药品的过程中药品的图像信息会被特定的摄像机采集,采集完成后向计算机系统传递采集信息,然后计算机系统会分析与处理这些信息,把没有包装好的药品自动识别出来,并且向分离区传递识别信息,分离区的自动装置会依据传输的分离信息,隔离开没有包装好的药品,这样就可以有效分类包装好的药品与没有包装好的药品,在药品包装检测方面应用计算机视觉技术代替传统人工检测,不但可以实现药品准确无误的检测,而且还可以大大提高检测药品包装质量的效率,完善了药品生产的自动化,由此可见,在医学自动化中应用计算机视觉技术可以积极促进医学自动化的发展。
3 结束语
总之,计算机视觉技术是一门研究计算机识别能力的高新技术,它涵盖了很多其他技术,具有一定复杂性。要想使其在自动化生产中得到更好地推广与应用,我们必须在明白其基本概念、工作原理以及理论框架的基础上,结合实际生产情况,不断进行深入研究,只有这样才能使计算机视觉技术得到更好地推广与应用,才能使这项现代化的高新技术更好的服务于社会,服务于人类。
参考文献:
[1] 龚超,罗毅,涂光瑜.计算机视觉技术及其在电力系统自动化中的应用[J].电力系统自动化,2003(1).
1.1计算机视觉学概述
从某种意义上说,计算机视觉学是一门在20世纪60年代兴起的新学科。它是一门边缘学科,融入了很多学科的特点,具有很强的工程性特征。比如,图像处理、应用数学、光电技术。换个角度来说,计算机视觉同属于工程领域、科学领域。
1.2计算机视觉的应用
计算机视觉的应用能够使计算机具有和人一样的视觉功能。在生活和生产过程中,照片资料、视频资料的处理是计算机视觉应用的主要方面。比如,在航空事业方面,对卫星照片的翻译;在医学领域中,主要用于辅方面的诊断;在工业生产方面,由于各种复杂因素的影响,计算机视觉在这方面的应用显得特别简单,有利于相关系统的实际构成。
2目标图像检索存在的问题
从某种角度来说,目标图像检索需要分为特征匹配、特征提取两个方面。它们表达了不同的含义。对于特征提取来说,它是图像进行检索的第一步,其提取结果会对进一步的研究造成直接的影响。而对于特征匹配来说,其匹配的准确度会直接影响图像检索系统的返回结果。但在目标图像检索完善的过程中,遇到一些问题阻碍了这两个方面的完善。因此,本文作者对其中的一些予以了相关的探讨。
2.1环境因素不断变化
对于目标图像来说,环境因素是影响其准确率的重要因素。同时,在复杂混乱的环境中,由于受到众多干扰物的影响,加上部分目标图像区域被遮盖,致使目标图像信息不够全面,使目标物体特征的提取难度进一步加大。
2.2图像噪声的影响
子为了更好地模仿生活中的图像检索,数据库中的图像也会随之发生一系列的变化。比如,尺度、角度、光照。而其中图像噪音的影响会使目标物体的外观发生对应的变化。在此基础上,严重降低了目标图像信息获取的准确度。
2.3目标图像检索训练数据的自动标注
由于处于网络中的图像资源信息过于繁多,需要采用手工的方式对它们进行标注。但这种方法非常浪费时间,准确率也比较低。很显然,这就需要目标检索图像能够具有自动标注的能力。实际上,图像检索方法过分依赖人工标注信息。而这些信息很多收到来自各方面因素的影响。比如,认识差异因素、个人经验。以至于对图像产生误解。
3基于计算机视觉下的目标图像检索技术
3.1以多尺度视觉为纽带的目标图像检索方法
该种目标检索技术的应用主要是为了提高目标图像检索的准确率,能够实现目标图像训练数据的自动化标注。该类技术主要是用于那些没有遮挡,不需要进行监督的目标图像检索方面。具体来说,它需要经过一系列的训练。在训练的过程中,以统计学习为纽带,对相应多尺度的目标检测模型进行适当的训练。在此基础上,以该模型为基点,对图像中那些显著性的区域进行合理地提取。比如,该区域的亮度、颜色。最后,需要对用于该实验研究中的概率潜在语义分析模型进行合理地利用。总之,利用这种检索方法可以对图像中那些显著目标所处的区域自动进行检测。同时,对其中目标图像的显著性进行合理地排序,能够提高检索引擎所返回图像结果的准确度。
3.2以彩色LBP局部纹理特点为媒介的目标图像检索方法
这种目标图像检索方法能够有效地解决图像信息采集过程图像噪声以及其它相关因素对所提取纹理特征的影响,提高了图像目标的准确率。对于这种图像目标检索方法来说,它把图像彩色空间特征和简化的LBP特征有机地相融合。在此基础上,该类方法增加了光照的不变特性,却保留了LBP局部的旋转特点。在提高图像检索速度方面,主要是利用原来的LBP特征来丢失其中的彩色信息。以此,使其中的特征维度能够在一定程度上降低。同时,这种目标图像检索方法的应用可以使对应计算方法的难度得以降低,还能对角度等变化状态下的目标图像进行准确地识别以及检索。
3.3以视觉一致性为桥梁的目标图像检索方法
从某个角度来说,它的应用主要是为了提高图像搜索引擎的返回效果,使局部噪声图形具有更高的显著性特征。一是:站在客观的角度,对搜索引擎返回结果的目标显著图予以准确的计算。此外,还要对其中的目标显著系数进行适当地过滤。二是:以所有图像为基点,以显著目标为导向,采取视觉一致性的模式。三是:以视觉一致性为基础,对其中的不同目标图像信息进行客观地分类。这种以视觉一致性为核心的方法能够有效地提高图像检索结果的准确率。更重要的是,在提高图像搜索引擎检索性能的同时,能够及时为用户选出最优的图像信息。而这些信息资源和用户寻找的主题信息密切相关。
中图分类号:TM862 文献标识码:A 文章编号:1671-2064(2017)01-0054-02
计算机图形学、计算机视觉以及可视化技术三者均是计算机领域重要组成部分,要做好计算机知识,就要先学好计算机图形学,但计算机图形学学习相对枯燥,尤其是算法教学难以理解,为解决这一问题,计算机视觉与可视化技术被应用到计算机图形学中。可见,三者之间存在一定的联系,因此,有必要对计算机图形学、计算机视觉以及可视化技术展开研究。
1 计算机图形学概述
1.1 计算机图形学目的
所谓的计算机图形学实际上就是怎样利用计算机表示图形,并利用计算机完成图形计算与处理,而这一过程的实现需要得到相关算法的支持。学习计算机图形学的目的是利用计算机技术为人们呈现既带有美感又不缺真实的图形(如下图1所示),为实现这一目标,就需要按照图形的要求创设合适的场景,并在一些光照模型的作用下,做好光照效果设计,在这一过程中需要计算机图形学能够与其他计算机技术相配合。经过计算机图形学出来的图像,多会以数字图像的方式展示出来,总的来说,计算机图形学与图像处理之间存在着一定的联系[1]。计算机图形学的涉及范围相对宽泛,不仅有图形硬件设计,还包括动画制作,虚拟现实等多个部分。此外,计算机图形学在动画制作中的应用频率也很高,如45分钟一集的动画影片中,85%的画面都需要用算机图形学来完成,由此可见,计算机图形学的应用频率极高,并在动画制作中发挥着不可替代的作用。因此,应重视计算机图形学的应用。
1.2 计算机图形学应用
随着计算机图形学的发展,它被应用到各个领域中,并发挥着重要作用。首先,在计算机辅助设计与制造中的应用,这是计算机图形学应用最多的领域,在计算机图形学被应用以后,不仅可以设计出更精准的图形,还能做好人机交互设计,强化修改能力。计算机图形学还被应用到三维形体重建中,利用该技术可以将原理的二维信息转化为三维信息,如在某次工程图纸设计中就应用了计算机图形学,经过一系列的处理以后,三维形体逐渐形成,最终实现了重建。其次,在医学领域中的应用。计算机图形学在医学领域中的应用多以计算可视化的形式展示出来,如在脑部手术中,医生为看清患处真实情况,经常需要利用在可视化技术的作用下将复杂的数据转化为图像,这时就体现了计算机图形学在其中的应用[2]。再者,在计算机动画中的应用,人们看到的动画影片就是计算机图形学作用的结果,以动画人物的行走为例,为保证动画人物的行走与自然人不存在过大差异,就需要应用大量的计算机技术,并在计算机图形学的作用下完成设计。最后,在计算机艺术中的应用。计算机图形学在计算机艺术中也有广泛应用,它不仅可以用于艺术制作,很多场景都是通过计算机图形学来完成的,现阶段,一些人正在利用计算机图形学创设人体模拟系统,其目的是让已故人士再次出现在荧屏上,这一目标的实现就需要得到计算机图形学的支持。
2 计算机视觉技术
2.1 计算机视觉技术含义
所谓的计算机视觉技术,实际上就是用计算机取代人眼做识别、跟踪以及测量等,同时也兼顾图形处理,其目的是让图像在计算机被处理以后更适于识别。对于计算机视觉技术来说,意在实现人工智能,主要是从图像与多维数据等方面实现人工智能系统设计[3]。计算机视觉是一种在相关理论与模型基础上发展起来的视觉系统,其主要构成部分有以下几种:
(1)程序控制,这一点主要体现在机器人设计上;(2)事件检测,多体现在图像监测上;(3)信息组织,主要体现在图像数据库等方面。计算机视觉三个阶段如图2所示,通过观察图1可以发现,计算机视觉存在于图像处理始终,从早期处理直到后期结束都存在,最终实现了3D描述,可见,计算机视觉具有十分重要的作用[4]。
2.2 计算机视觉技术的应用
现阶段,现代社会已经进入信息化时代,计算机技术也被应用到各个领域,并发挥着重要作用。计算机视觉的应用促使计算机实现了智能化,在该技术的支持下,计算机可以像人一样透过视觉看待世界万物,且具有良好的适应能力,但这一目标的实现还需要很长时间,需要一系列的努力才能实现。现阶段,计算机视觉应用最多的就是车辆视觉导航,然而,这种导航还没有实现完全自主导航,这也是需要进一步研究的地方。计算机视觉技术的适应性较好,特别适合在工业领域应用,即便是存在电子在干扰或温度变化较大的地方都能很好的运行,其整体效果也不会受到影响,再者,计算机视觉技术的嵌入性较好,成本相对较低,尤其适合在PC方案中使用,同时,具有一定的非接触能力,能够获取大量信息,且不受距离限制,总的来说,计算机视觉技术总体效果较好,适合利用在各种工业环境中应用,因此,应重视计算机视觉技术的应用[5]。同时计算机视觉还被应用到移动机器人设计中,主要是利用小波模板展示人体形态,然后做图像扫描,这样就可以顺利完成小波变换,进而了解到人的存在。同样,将计算机视觉应用到机器人设计上,可以自动检测出正在行动的人或车辆,而无法检测到静止的人,之所以会出现这样情况,主要是由于其中采用率步态分析法。
3 可视化技术
3.1 可视化技术含义
可视化技术是一种综合了计算机图形学与图像处理于一体的技术,它可以将复杂的数据转化为图像并在屏幕上展示出来。在可视化技术中,融合了以上两种技术的特点,并在多个领域都有应用,随着可视化技术的应用,不仅有效实现了数据表示,还强化了数据处理能力,更对数据决策分析有一定作用[6]。现阶段,虚拟现实技术已经成为可视化技术主要发展方向。
3.2 可视化技术的应用
首先,在计算机图形学教学中的应用,计算机图形学相对枯燥,相关知识也很抽象,不便于学生理解,在计算机图形学中最重要的部分是曲线曲面,而这些曲线曲面多是与数学模型有关,具有一定的抽象性,学生理解难度较大,以往教师只能通过一系列的公式演算帮助学生理解,尽管这样依然难以让学生掌握曲线变化情况,学生依旧无法正确理解。为减少这种情况的发生,可视化技术被应用到计算机图形学教学中,教师将抽象的知识用动画的形式展示出来,学生只要观看动画,拖动一定的控制点就可以了解到曲线变化情况,这样一来不仅增加了教学趣味性,学生也可以随意变动曲线,让复杂的知识变得简单,深化学生对计算机图形学知识的深度理解,同时,利用可视化技术在一定条件下,还可以完成代码编译,如在Actoin ScriPt中做编译,这样也可以增强学生的理解能力[7]。
其次,在医学领域中的应用。医学领域对于可视化技术的应用主要体现在放射治疗与矫正手术上。通过可视化技术可以屏幕上看到手术整个过程,并将原来细节部位放大,手术医生观察的更加细致,手术成功几率也会大幅度提升,患者生命也能得到保证(如图3所示)。如在对某名患者进行身体检查的过程中需要应用到可视化技术,由于通过检查会获得大量数据,而这些数据又相对复杂,但在可视化技术下就可以通过图表、曲线图或立柱图的方式展示出来,经过可视化技术的作用,了解到患者的血糖为5.6mmol/L,医生可以根这一数据做出诊断,而不必再分析这些数据。据不完全统计,80%的医疗检查工作都是需要利用可视化技术。
地质勘探是我国最重要的工作之一,由于多数矿藏都深埋地下,即便使用探测仪受多种因素影响也无法了解到实际矿藏情况,这就需要应用到可视化技术,在可视化技术的作用下,相关工作人员可以了解到地下有无矿藏,如果存在矿藏,相关工作人员也可以了解到矿藏所在位置与实际储备量,进而为矿藏开采奠定基础。如在地质勘探中,相关工作人员利用可视化技术做地形图整理,然后从中提取地形数据,再用CATIA做导入,这样就可以完成地形模型创建,这样就完成了三维地质模型创建工作,同时在相关工作台的影响下,还可以完成地形数据导入,进而生成一定的地形云点,如果其中存在错误,可视化技术也可以将其中的错误内容删除,这些都是可视化技术所带来的好处[8]。由此可见,可视化技术已经成为地质勘探中不缺少的技术。
最后,在气象预报中的应用(如图4所示)。利用可视化技术能够将数据转化为图像,通过观察图像就可以了解到云层变化情况,同时也能了解到实际风力大小与风走向等,气象预报人员就可以根据图像做出精准分析,需要了解气象变化的人也能了解到现实情况,如果气象条件恶劣,相关工作人员也可以及时做出工作调整,减少危险事件的发生。据不完全统计,可视化技术在气象预报中的应用频率高达100%,由此挽回的经济损失高达13.2亿元,可见,可视化技术在气象预报中的应用十分有必要,因此,应重视可视化技术在气象预报中的应用。
4 结语
通过以上研究得知,计算机图形学、计算机视觉以及可视化技术三者各具特色,三者间也存在一定的关系,尤其是可视化技术综合了前两者的特点,并融合了其他技术,在很多领域中都有应用。可视化技术是现阶段应用最多的一种技术,在计算机图形学教学中也有应用,并发挥着不可替代的作用。本文分析了计算机图形学、计算机视觉以及可视化技术的含义与应用,希望能为相关人士带来有效参考,正确利用这些技术。
参考文献:
[1]陈敏雅,金旭东.浅谈计算机图形学与图形图像处理技术[J].长春理工大学学报,2011(01):138-139+146.
[2]柳海兰.浅谈计算机图形学的发展及应用[J].电脑知识与技术,2010(33):9551-9552.
[3]滑瑞朋.计算机图形学的应用及研究[J].山西科技,2012(05):37-38+45.
[4]刘涛,仲晓春,孙成明,郭文善,陈瑛瑛,孙娟.基于计算机视觉的水稻叶部病害识别研究[J].中国农业科学,2014(04):664-674.
[5]关然,徐向民,罗雅愉,苗捷,裘索.基于计算机视觉的手势检测识别技术[J].计算机应用与软件,2013(01):155-159+164.
中图分类号:TP391 文献标识码:A 文章编号:1671-7597(2014)07-0001-01
随着科学技术的快速发展,计算机技术也得到了飞速的发展。将计算机技术应用于人类的视觉系统,并辅助人们观察到一些眼睛难以看到的东西,已经逐渐成为一门大家所热捧和追逐的技术。随着人们对视觉传感器技术越来越多的探索,人们也逐渐实现了古代时想拥有千里眼的梦想。目前,人们已经把视觉传感器技术和计算机技术良好的结合在一起,并把这些技术应用到食品、建筑、医药、电子、航天航空等众多领域当中。而该项技术的快速发展,也帮助人们解决了一些日常工作当中人类视觉存在盲区的问题,保证了人们工作过程的安全。视觉技术与IT技术的完美结合使得人们的生活变得更加便利,让人们亲身体会到了IT技术给人们生活带来的便捷。
1 双目立体视觉概述
双目立体视觉又称双目视觉技术,是目前计算机视觉应用领域的重要研究内容。双目立体视觉控制系统的组成因其采用的原理和应用功能的不同,组成也都各不相同。
双目立体视觉的实现原理是基于人眼的视网膜看物体的特性,从两个不同的方向来观看同一个物体的不同角度,从而实现清楚的了解到物体的图像的目的。双目立体视觉从不同的角度获得物体的投影信息,并根据匹配的结果,获取同一个物体不同偏差位置的信息。最后在依据三角测量技术,根据已经获得的这些偏差信息从而获得这些不同点对应的距离信息,并最终获得这些实际物体的具体坐标位置信息。
视差测距技术告诉我们,要清楚的观察到一个物体的全貌,需要两个观察物从不同的方向,或者固定一个观察物,移动另外一个观察物的方式,以达到拍摄同一个物体的目的。根据同一个物体在两个观察物当中的位置偏差,从而确定该物体的三维信息。一般来说,双目立体视觉的组成包括:图像获取设备、图像预处理设备、摄像机标定设备、立体匹配设备、根据二维信息实现三维重构设备等五个重要设备。
2 双目立体视觉技术的原理
立体画又可以称之为三维立体画,是一种人们可以从三维立体图中获取二维平面图信息的技术。三维立体图表面看似毫无规则,但是假如通过一些特殊的技术或者通过合理的观察手段和观察设备,就可以看到一组秩序井然的美妙图片。
三维立体图是一组重复的二维图片有序的堆积积累而成,因此可以呈现出立体效果。人体观察物体的原理大致如下:当人类通过左右眼观察所在的空间平面的时候,这些平面图都只是一些毫无秩序的图片。而当左右眼重新聚焦或者在观察画面的时候呈现一定的层次感,则人类的左右眼观察到的一组重复案在经过人体识别以后,这些画面之间将存在一定的距离差异,从而在脑中生成立体感。
双目立体视觉技术正是基于以上的原理,从两个不同的方向去观察物体,并获得目标图像的信息,并经过一定的处理获得三维重建的物体立体信息的技术。
双目立体视觉在计算机技术中实现三维重建的大致流程
如下。
1)摄像机定位,并通过单片机计算得到要获取图像信息需要的外部的参数的大概值,并根据这些参数值设定摄像机。
2)用设定参数的摄像机拍摄目标场景的画面,并采集这些画面的二维图的信息。
3)通过计算机技术实现双目匹配,并判定采集画面中的二维图像中的不同点之间的对应关系。
4)在第三步中若得到两组二维图像的关系是稠密的时候,则生成三维视差图。如果不是则进一步采集图片信息。
5)根据得到的视差图最终实现场景的三维图形的重建。
3 双目立体匹配技术的研究难点和未来的发展方向
尽管目前有很多学者都投身到双目立体匹配技术的研究和开发当中,直至目前为止也解决了很多关于视觉理论当中存在的很多缺陷问题。但是视觉问题是一个复杂且难以解决的问题,特别是在双目立体匹配问题方面更是困难重重。立体匹配技术的难点已经成为限制将双目技术应用到计算机技术当中的重要瓶颈。
立体匹配的主要手段就是找到计算机采集到两幅和多副图片的中像素的对应关系,然后根据这些像素关系判定并生成三维重建图。但是二维图像的匹配存在层层困难,主要体现在以下几个方面。
1)由于视角的问题或者观察物体存在遮挡问题,导致采集回来的图片信息存在盲点,这样子更难找到图片的匹配区域。
2)场景中的一些深度不连续的区域大都处在场景当中的边界位置,这些位置容易出现像素不高,边界不清晰等问题,这些问题也给图像匹配带了很多困扰。
3)场景当中的低纹理的图片匹配特征和匹配关系较少,而且该位置的每个像素点极为相似。假如只是通过简单的像素相似性检测的话,会检测到很多匹配结果,而这些匹配结果当中有一大部分是错误的。这样子的结果势必会导致最终的图像匹配正确率极为低下。
从以上的分析,我们可以看出立体匹配技术存在很多技术上的难点,这些都在很大程度上限制双目立体匹配技术在计算机当中的应用发展。如何才能设计出有效、准确、快速、通用性强的立体匹配算法将会是以后双目立体匹配计算发展的重要方向。也只有通过设计出一套行之有效的立体匹配算法才能使得双目立体匹配技术在计算机视觉当中得到广泛的应用。
4 结束语
人们通过眼睛可以感受到外界事物的存在,可以清楚的了解到事物的立体信息,分辨出观察物的广度和深度,以及物体的远近。因此人类视觉感知系统就是一个双目的立体感知系统。本文讲述的计算机中的双目立体匹配技术正是基于人眼视觉观察物体的原理,通过双目立体视觉原理,对计算机采集获得两幅二维图像的信息进行分析,并结合计算机的分析,最终获得同人类眼睛一样观察到物体三维表面信息的目的。双目立体匹配技术与计算机技术的完美结合帮助人们可以更加轻易的获得物体的信息。希望在不久的将来,可以将该项技术应用于人类的视网膜当中,以帮助一些视网膜存在问题的人们,让他们重新感受到光明,感受世间的温暖。
参考文献
[1]高文,陈熙霖.计算机视觉算法与系统原理[M].北京:清华大学出版社,2002.
[2]明祖衡.双目立体视觉测距算法研究[M].北京:北京理工大学,2008.
[3]刘昌,郭立,李敬文,刘俊,杨福荣,罗锋.一种优于SAD的匹配准则及其快速算法[J].电路与系统学报,2007,12(4):137-14.