发布时间:2023-09-28 10:31:01
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇初中数学逆向思维范例,将为您的写作提供有力的支持和灵感!
例1:a为何值时,方程a/(x+1)-1/(1-x2)会产生增根?
分析:此题按常规思路考虑,运算量大,不易求出a的值,如运用逆向思维――反推发就能简便的得出a的值。
解:若原方程有增根,则增根必须是x=1或x=-1,由增根意义可知,x=1或x=-1是原方程去分母后得到的整式X2+aX+a-2的根,当x=1时,-2≠0,当x=-1时,2a=1,即a=1/2,所以a=1/2时,原方程会产生增根。
例2:已知m≠n且m,n满足m2-5m+2=0,n2-5n+2=0求n/m+m/n的值.
分析:解此题的常规方法就是根据解一元二次方程,分别求出题中的两个方程中的未知数M和N的值,再把值带入未知式。但是这样做的工作量很大,M和N各有两个根,需要代入计算四次。所以我们可以利用逆向思维,首先考虑未知式,对它进行化简,再根据根与系数的关系进行解题,具体步骤如下
解:由题设逆用方程的根的概念,也就是说m,n是方程x2-5x+2=0的两个根,由根与系数的关系可知:m+n=5,mn=2,所以.
例3:已知a,b,c是实数,a〉b〉c,且a+b+c=0,求证:抛物线y=aX2+bX+c开口向上。
分析:此题从正面无法下手解决问题,若运用“反证法”,就有出人意料的效果。
证明:因为a≠0,假设抛物线开口向下,则a〈0。又因为a〉b〉c,所以b〈0,
c〈0,此时与a+b+c=0相矛盾。因此假设不成立,即抛物线y=aX2+bX+c开口向下。
二、几何证明题中渗透逆向思维
例1:在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点.
求证,MN与PQ互相垂直平分.
分析:要证明MN与PQ互相垂直平分,我们可以把构建成MN与PQ四边形正方形或菱形的对角线,具体方法如下:
解:连结MP,PN,NQ,MQ,M,P是AD,BD的中点,MP∥AB,MP=AB/2,
同理:NQ∥AB,NQ=AB/2,MP∥NQ,MP=NQ,四边形MPNQ是平行四边形.
同理,MQ=CD/2,又AB=CD,MP=MQ,平行四边形MPNQ是菱形,
MN与PQ互相垂直平分.
例2:如下图所示已知:AB、CD是圆内非直径的两条弦,求证AB与CD不能互相平分
证明:假设AB与CD互相评分与M点,则由已知条件AB、CD均非直径,可以判定M不是圆心,连接OA、OB、OM
因为OA=OB,M是AB中点,所以OMAB
同理可证
对一种思维方式的应用,我们首先就应该了解与认识这种思维方式的定义与形成。那么何谓逆向思维方式呢?它就是反常规的思维方式,即从已有习惯思路的反方向来思考与分析问题,这就是逆向思维区别于常规化思维最主要的特征。逆向思维其实古已有之,并对科学发现有着重大的推动作用。像历史故事“围魏救赵”、成语故事“以子之矛、攻子之盾”和孙子兵法“声东击西”等都充分说明了逆向思维早就已经存在并且运用的途径非常广泛。我们在培养学生逆向思维的教学中常常会遇到学生定式思维根深蒂固和学生对逆向思维反应较慢等问题。
二、初中数学教学培养学生逆向思维的途径
1.挖掘学生数学逆向心理是培养学生数学逆向思维的前提
培养学生数学逆向思维就应该先树立给学生一个可逆性思考的角度,让学生认识到可逆性在数学中是大量存在的、可逆性是数学逆向思维的最基本特征。这样在老师的不断引导下学生就会在浅意识中慢慢植入运用可逆性思维来解决数学问题的想法。这样学生在做数学题的时候除了习惯传统的正向推理外,也会尝试利用逆向思维来思考,从而培养学生一分为二、多角度来分析与解决问题的能力。
2.定理公式中渗入逆向理念是培养学生数学逆向思维的重要方式
首先,逆向思维应该在定理与公式中体现出来。在初中数学中有很多定理和公式不仅可以用正向思维向学生讲解,还可以利用逆向思维从相反的方面向学生传授。互逆定理最为典型,像勾股定理及逆定理、角的平分线性质定理及逆定理等,公式像乘法公式、整数指数幂的运算公式等都可以从两方面来分析。
其次,在概念与定义中传播数学逆向思维方式。从数学学科的特点中我们可以知道,有很多数学定理与公式都是可逆的、双向的。教师在讲解一个公式的时候除了向学生教授基本的、固定的形式外,增加并分析该定理与公式的逆向结构也是非常重要的。例如,学习同类项时,我就利用了一个逆向思维的题目加深学生对此概念的理解和掌握:如果-amb3+2a2bn是单项式,求m+n的值。起初同学们还比较困惑,但是当我引导学生倒着想,题目就迎刃而解了。这种逆向运用定义的训练,可以为学生以后几何证明学习打下良好的基础。
3.课后的补充练习是培养学生数学逆向思维的巩固和完善
数学逆向思维的培养不仅局限于课堂上,而且在课后的作业中也应该有所体现。教师在课堂上除了由浅入深地举例讲解外,在布置课后作业时也应特别注重学生逆向思维解题能力的巩固。例如,在平面几何的定义和定理中应强调其可逆性与相互性,在布置课后作业时可以要求学生从多角度来思考问题,给予学生以数学逆向思维的引导,便于学生在解题中训练数学逆向思维能力,做到熟能生巧。
数学一直以来都是一门思维性很强的学科,而逆向思维是数学思维中的重要组成. 培养学生逆向思维的过程实际上是培养学生的思维敏捷性. 有研究表明,很多学生的数学成绩不理想很大程度上是因为逆向思维的能力不足,习惯只是学习公式、定理等刻板的内容,没有创造和观察的能力. 所以,在教学过程中教师应该对逆向思维的培养给予足够的重视.
一、在实际教学中逆向思维的培养
1. 加强基础知识的逆向教学
初中阶段的数学教学仍是基础教学,在教学的过程中强调对于基础知识的掌握,同时引入逆向思维不单可以加固学生对于基础知识的掌握,也可以锻炼学生的思维,拓展了思考方式. 在基础教学中应该对概念的理解和运用上优化逆向的教学. 在这中间存在很多互为的概念. 例如:互为倒数、互为相反数等,通过这些概念教师可以指导学生从正、反两个层面对问题进行思考,培养他们的逆向思维能力.
2. 由概念着手增加学生的逆向思维
数学中很多概念是互逆的,对于这种类型的概念可以采用先正后逆的方法,打破学生的常规思维模式,帮助学生更清晰地分析概念,同时养成双向考虑问题的习惯. 比如同类项是代数中的重要概念,为了可以加深学生对该概念的掌握和理解,可以举例并分析:
(1)假设-amb3与2a2bn是同类项,那么m,n的值是多少?这题目一开始会难住很多学生,但如果教师可以引导学生运用逆向的思维方式来解题,学生就可以根据相应的逆向思维得出m = 2,n = 3.
(2)教学相反数的概念时,不单可以问学生3的相反数是几,同时还可以提出0.3的相反数是多少,或-5和数字几互为相反数,等等. 通过从正反两个层面提出问题可以有效地帮助学生去理解相反数的概念.
3. 通过公式法则培养学生的逆向思维能力
在数学的教学中往往要涉及很多的公式、法则,对于这些公式和法则的双向性学生是比较容易理解,但是大多数学生只会从左至右地正向运用,对由右至左的逆向运用不熟悉. 所以,在法则和公式的教学中要加强相应的逆向指导,只有正确地运用正逆两种法则和公式在解题的时候才能得心应手. 举例说明,在不解方程的情况下,判断方程2x2 - 6x + 3 = 0的根的情况. 在解题的时候可以将方程变式成为:已知关于x的方程2x2 - 6x + k = 0,k取何值方程有两个不相等的实数根?经常进行这种有针对性的逆向锻炼对逆向思维的形成会起到非常重要的作用.
4. 注意在解题方法上进行逆向思维的训练
(1)反证法. 反证法是一种间接的证明方法,以特征结论的反面为基础,推出矛盾,以此来否定证明结论的相反面来肯定特征的结论. 这也是很多数学问题在直接证法处于困难时所经常使用的方法. 加强反证法的锻炼可以帮助学生拓展思维的广度、深度,对逆向的思维培养起到关键的作用.
(2)分析法. 分析法实际上是从命题的结果出发,一路分析充分条件,直至推理出已知条件的方法. 这样的方法也可以充分培养学生的逆向思维能力. 看果追因是分析法的基本内容,其关键是整个解题过程一定是一个可逆的情况.
(3)举反例. 在数学的命题中给出一个命题要判断其错误,只要给出一个满足命题的条件但结论并不能成立的例子就可以否定此命题. 这种方法就是通常所说的举反例. 加强对举反例的锻炼可以有效地锻炼并培养学生逆向思维的能力.
二、逆向思维在数学解题中的应用
1. 立体几何命题
立体几何中的定理、概念除了直接应用之外,还可以根据题目的特点与要求进行相反的应用. 举例说明,求证:分别在两个平面内的两条不平行直线是异面的直线. 根据题目的条件得知两条直线不平行. 只要证明了这两条直线并不相交就可以证明是异面直线. 从这个题目可以看出,利用反证法来解决此问题是非常容易的.
2. 概率命题
举例说明,全班共有50名学生,求至少有2个人是同月同日生的概率. 这是一个世界著名的生日怪论命题,帮助学生了解此理论,引导学生运用对立事件的解决问题非常容易. 先得出50名学生都不是同月、同日生的概率,之后根据对立的事件的总概率 = 1,得到至少有2个人同月同日生的概率值. 充分利用对立事件进行逆向思维,可以让原本复杂的概率问题得到简化.
3. 不等式命题
横向思维是从知识之间的横向相似出发,即从数学的不同分支:代数、几何、三角或分析等角度去考查对象,从有关规律出发去模拟,仿造或分析问题的思维方式.它利用相似性,把不同知识与方法交叉起来,从横向的联系中得到暗示或启发,从而具有发现知识或方法的开放性,以及解决问题的灵活性.
从以上两例可看出,横向思维需要有“似曾相识”的感觉,要以一定的数学知识和解题经验为基础,知道一些基本问题的解法.只有如此,对于一个陌生的问题,进行过深思熟虑的分析,采取迁移、转化、构造等手法,才有可能联想到一个熟悉的且与所给问题相类似的简易问题,并根据这个简易问题的解法来揣测解决所给问题采取的途径,最终使问题获解.在这一系列过程中,学生的零散知识得到重组,积极性充分调动起来,分析解决问题的能力得到提高,活跃了思维,磨练了意志.
二、逆向思维
逆向思维是从已有的习惯思路的反向去思考和分析问题,表现为逆用定义、定理、公式、法则;逆向进行推理,即顺推繁杂时考虑逆求;反向进行证明,即直接解决较困难时考虑间接解决,从反方向形成新结论,即探讨可能性或合理性存在逻辑困难时考虑探讨新的可能性等.逆向思维反映了思维过程的间断性、突变性和反联结性,它是摆脱思维定式,突破旧有思想框架,产生新思想、发现新知识的重要思维方式.
例3 如图2,如果凸四边形ABCD的两组对边的平方和相等,试证:ABCD的对角线互相垂直.
中图分类号:G633.6 文献标识码:B文章编号:1672-1578(2016)10-0249-01
对于数学学科来说,其存在极强的逻辑性,对于学生的逻辑思维要求极高,如果学生可以掌握学习规律,就能够在某种程度上完善思维能力,继而有效解决学习中遇到的困难。有研究表明,数学教学中如果运用单一教学模式将会禁锢学生思维,长此以往促使学生思维能力变弱,而如果对学生施以逆向思维培养将会获得相对较好的教学效果。本文简要介绍了逆向思维的定义及具体教学策略,进一步促进初中数学教学质量与效率都得到极大的提升。
1.逆向思维概述
所谓逆行思维,从本质上分析属于创造思维,是正思维的对立面,与以往的思维模式具有极大的差别性,是从问题结果着手进行反向思维思考,然后得出结论。逆向思维是传统思维的一种反面,探索方向正好相反,这在某种程度上打破了学生固有思维,这对学生的帮助是非常大,可以快速找到解决问题的方法策略,极大的提升了学生的学习效率,通过逆向思维思考问题变得清晰简单,同时还可以从日常的解题中总结经验,形成规律性。基于整体教学考虑,教师应该关注这一方面的教学引导,将学生逆向思维充分调动起来,这样可以拓宽学生思维,对于其日后的学习也是非常有帮助的。
2.逆行思维培养于教学中的具体应用
2.1 数学概念应用。教师在进行数学教学时,可以在课堂中积极引导学生运用逆向思维去思考问题,继而解决问题,教师通过教学渗透让学生可以拓宽思维,运用不同的解题思路去完善学习。但是基于现状分析来看,很多学生逆向思维能力并没有得到有效开发,他们在理解数学概念遇到了一定的困难,对其抽象性难以有效分析,存在片面性,这在某种程度上将会影响到学生日后的解题方向。例如:教师在进行相反数概念教学时,可以先从正面渗透,如相反数是什么?然后再从逆向思维方面进行教学渗透,什么数属于相反数?例如:b=-6,则-a=();假如-b=-6,那么b=()。教师通过上述逆向思维的提问可以帮助学生形成逆向思维,对于学生日后的学习起到助力。实施补角内容教学时,教师基本上都会正面进行引导,α+β=180°,就可以推断出上述α、β互为补角;反之,假设α、β互为补角,就能推断出α+β=180。。教师在教学过程中运用不同的逻辑思维对学生的帮助极大,对于概念的学习非常完整,加深概念理解对日后的学习打下良好的基础。
2.2 解题技巧应用。学生逆向思维的形成是需要自身努力的,而教师在此过程中只起到了引导作用,只有学生在日常学习中不断累积经验,通过锻炼总结规律。教师在课堂教学中应该起到引导作用,逐步向学生渗透解题策略,继而从最大限度上提升其解题能力,完善逆向思维训练。
逆用运算律,例如:139×(-60)+139×52-10×139-84×61-69×66,当学生看到这一题时通常会觉得是难题,这其中涉及到运算律,并且是逆用运算律,初中阶段学生刚刚接触到混合运算,这道题对于学生而言容易出现误区,教师需要在其中发挥关键性的引导工作,要求学生认真审题,帮助学生借助逆用运算律解决,从而简化解题步骤。原式可以这样解,即=139×(-60+52-10)+61×(-84+66)=139×(-18)+61×(-18)=(139+61)×(-18)=-3600。
从上述案例中我们可以看到,逆用运算律能够帮助学生有效解决数学问题,节省习题时间,提高做题准确率,从而提升学生数学解题能力,在日常的解题训练中不断优化自身的逆向思维能力,提高学习质量。
2.3 难题解答中的应用。初中数学教学中涉及部分难以解答的问题,教师通过正面讲解无法帮助学生理解透彻,这时可以借助逆向思维方式去重新理解题目,将会获得不一样的解题思路。例如:在以下三个公式中,X2+4ax-4a+3=0,X2+(a-1)X+a2=0,,X2+2ax-2a=0,至少有一个公式,具有实数根,求a的取值范围。这道题学生从正面思考相对而言问题较多,具有一定的困难性,情况极为复杂,假设从反方向思考,三个方程式均没有实数根,从这个角度分析,a的取值范围就很好确定,即Δ1=(4a)2+4(4a-3)
疑难问题是现阶段初中生极易遇到的类型,很多学生运用正向思维不能理解题意,并且难以有效解决,给学生造成一定的精神困扰,导致学生学习积极性受到影响,挫伤学生学习自信心,造成学生成绩不能有效提升。从另一角度分析,逆向思维可以帮助学生从不同角度分析问题,解题思路更为明确,有效解决教学过程中的弊端,从长远角度分析,学生逆向思维的培养是非常关键的,有利于促进学生全面发展,提升其数学问题解决能力,为提高学生成绩奠定良好的基础。
总的来说,逆向思维对学生学习数学是非常有帮助的,教师在日常教学中可以积极引导,并根据教学的具体情况拟定切实可行的教学计划,真正使学生具有逆向思维,提高解题效率与质量,从而实现高效学习。同时,逆向思维的培养还有赖于数学教师的专门研究,如果操作不当会给学生带来学习的困难和困惑。培养学生的逆向思维,需要对学生的学情充分掌握,因人而异。最好能够进行分组教学,只有这样才能把逆向思维教学取得更好的教学效果。
参考文献:
[1] 杨昭,李文铭.浅谈初中数学教学中学生逆向思维能力的培养[J].学周刊,2016(01).
[2] 刘赫.试析初中数学教学中学生创新思维能力的培养[J].中国校外教育,2012(23).