发布时间:2023-10-05 10:23:42
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇变电站结构设计范例,将为您的写作提供有力的支持和灵感!
Abstract: based on the substation structure design through in practice and experience, according to the structural design of the proposed relevant design key points, and carry on the discussion, as to provide a reference for similar projects.
Keywords: substation; Structure design; Structure system; Internal force analysis
中图分类号:TU318文献标识码:A文章编号:
1. 引言
变电站结构设计不但要遵循国家规定的技术经济政策,同时结构设计时应重点做到安全适用,尽可能采取先进的技术,在确保结构质量的前提下应经济合理。对于变电站的结构设计来说,设计时应当重点满足强度、稳定、变形、抗裂及抗震等要求,并在总结实践经验和科学试验的基础上,积极慎重地推广国内外先进技术,因地制宜地采用成熟的新结构和新材料。
2. 变电站结构体系考虑
对于变电站结构设计,应根据建筑的重要性、安全等级以及抗震设防烈度等而采用合理的结构体系。通过工程实践表明,对于变电站结构的梁及柱宜采用现浇钢筋混凝土结构,对预留孔较多的部位或防水要求较高的屋面、楼面宜采用现浇钢筋混凝土板。同时,变电站建筑物在经济合理和非强侵蚀介质环境的情况下,可采用轻型钢结构,如热轧轻型型钢、轻型焊接和高频焊接型钢、冷弯薄壁型钢以及薄钢板、薄壁钢管等作为主要受力构件的结构,并在构件设计上并应优先采用定型的和标准化的构件以及标准化的节点型式,以及优先采用与轻型钢结构相适应或配套的建筑材料。对于变电站结构的屋面大梁宜采用钢筋混凝土结构或钢-混凝土组合结构,受施工限制且跨度超过15m时也可采用钢屋架,对于跨度超过18m时也可采用网架结构。
3. 变电站结构设计荷载取值技巧
变电站建、构筑物应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。500kV变电站的主要结构(如主控制楼、500kV配电装置结构)宜采用一级,其余结构宜采用二级。对于变电站中的屋外变电构架的关于导线荷载及设备自重的取值问题。导线荷载应由工艺专业提供,应考虑最低温、最大风、最大覆冰和安装检修工况条件下导线悬挂点所产生的水平张力、垂直荷重和侧向风压的标准值,导线的偏角,弛度和荷载因子D值。
4. 变电站结构设计技巧
对于变电站的构件技及其材料的选择应满足使用年限要求,并应考虑材料供应,构件加工制作以及施工安装的具体条件,力求结构合理、构造简单,合理统一构件的尺寸和规格,便于工厂化制作和机械化施工。同时对于变电站中的最低设计使用年限25年的屋外配电装置构架、支架,可根据地区的工程经验采用钢筋混凝土环形杆结构。对于最低设计使用年限为50年的屋外配电装置构架、支架宜采用镀锌钢结构或钢管混凝土结构,横梁宜采用钢结构。
(1)紧凑型的屋外构架结构可采用局部联合布置方案或全联合布置方案,构架结构布置满足联合受力的同时,应尽量减少或消除温度应力的影响。变电构架柱一般宜优先采用人字柱结构或空间桁架结构;但根据工程具体情况,在满足运行、安装和检修条件下,也可采用单杆或单杆打拉线(条) 结构。而对于组成构架柱的结构杆件应尽量减少弯矩效应,当杆件承受较大弯矩时宜采用空间桁架结构。
(2)针对变电站建筑中的屋外配电装置构架,设备支架等露天结构,必须根据大气腐蚀介质,采取有效的防腐措施。对通常环境条件的钢结构宜采用热镀锌或喷锌防腐。通过结合工程实践经验,笔者认为对于人字柱的根开与柱高之比,不宜小于1/7。打拉线构架平面内柱脚根开与柱高(地面至拉线点的高度) 之比,不宜小于1/5。构架梁的高跨比(高度与跨度之比) :格构式钢梁不宜小于1/25;钢筋混凝土梁不宜小于1/20;单钢管梁直径与跨度之比不宜小于1/40,单钢管联系梁直径与跨度之比不宜小于1/50,采用单钢管梁时应注意采取预防微风振动的措施。
同时对于构架设计应设有便利维护检修人员上下的设施。对半高型和高型布置的构架应合理设置必要的维护检修和运行操作的通道。高型及半高型屋外配电装置构架供人员上下的扶梯宽度不应小于0.60m,双侧扶手的扶梯及水平通道宽度不应小于0.80m;扶手栏杆高度不宜小于1.10 m。隔离开关操作平台的宽度应比设备尺寸大1.0m(每边加0.5m) ,同时应设置防止坠物的护沿,护沿高度不宜小于0.05m。供维护检修人员上下的直爬梯的设置应满足带电检修的上人条件,梯宽不宜小于0.30m。半高型及高型配电装置的平台,走道、扶梯及牛腿宜采用钢筋混凝土结构,当采用钢平台、钢梁及钢牛腿时,应考虑其防腐及维护的方便。
(3)另外,对于变电站中当建筑物长度大于55m时,宜设置后浇带。后浇带可每隔40m~55m设置一道,应设在对结构受力影响较小的部位,宽度为800mm~1000mm,钢筋宜贯通不切断,宜在后浇带两边配置适量的加强钢筋。在后浇带区段中间,可设置一道膨胀混凝土加强带。同时变电站结构所采用的后浇带应通过建筑物的整个横断面,分开全部墙、梁和楼板。后浇带的混凝土应在主体结构浇筑28d~60d后进行,浇筑时宜用微膨胀混凝土。
(4)对于变电站结构中的钢筋混凝土屋盖的温度变形及砌体干缩变形引起的顶层墙体的水平裂缝及各层墙体的八字裂缝,可根据具体情况采取下列措施:屋盖上设隔热板或其他保温隔热措施;减少屋盖温度变形对墙体产生推力的各种措施;减少墙体干缩变形的各种措施。
(5)对设有钢筋混凝土圈梁的带壁柱或钢筋混凝土构造柱的墙体,在柱的间距小于或等于30倍圈梁宽度且圈梁高度不小于120mm时,圈梁可视作不动铰支座来校验柱间墙体的高厚比。同时对于结构设计的承重墙,当梁跨度大于4.8m(对砖砌体)或4.2m(对砌块和料石砌体)时,梁的支承面下应设置混凝土或钢筋混凝土垫块,遇圈梁时垫块与圈梁宜浇成整体;当梁长大于或等于6m(对砖砌体)或4.8m(对砌块和料石砌体)且墙体厚度等于240mm时,其支承处宜加设壁柱或采用其他加强措施;当梁为预制结构且跨度大于或等于9m(对砖砌体)或7.2m(对砌块和料石砌体)时,其支承处应加构造柱,其端部应采取锚固措施,并应与柱或垫块锚固连接。
5. 变电站结构计算简图及其内力分析
对于变电站结构的计算简图的假定应符合结构的实际构造和受力情况。对空间杆系、多层构架的内力分析宜采用三维结构计算模型进行内力分析,也可简化为平面杆系。采用全联合构架结构计算模型进行内力分析时,应考虑构架联系梁轴向刚度的影响。对于由钢筋混凝土环形杆或钢管混凝土构件组成的人字柱,在主要承受水平力作用时,可按拉压杆不等刚度的刚架进行内力分析(刚度比可取1:2) ,也可按等刚度进行分析。在进行结构的内力分析以及变形验算时,其抗弯刚度可近似地按下列规定选用:对格构式钢结构,可按实腹式构件的刚度乘以下列的修正系数,对焊接结构取0.90,对螺栓结构取0.80。对钢筋混凝土环形截面构件在混凝土出裂前EI=0.425(1+αEρ)AEcrs2,混凝土出裂后EI=0.3(1+αEρ)AEcrs2。
另外,对于变电站中的构架在正常使用状态下的变形限值,不宜超过表1所规定的数值。正常使用状态可取安装工况(10m/s风,无冰及相应的环境温度) 条件作为变形验算的荷载条件。在正常使用极限状态(最大风,复冰) 条件下的变形限值,不应超过表1所规定数值的2倍。
表1构架的允许挠度值
注:表中L-梁跨度,H¬-构架柱计算点高度。
6. 结语
文章通过结合笔者从电站结构设计实践经验,对变电站的结构体系、荷载选取、构件设计等问题进行了深入探讨,提出了相应的设计技巧,以有效地满足变电站结构强度、稳定、变形、抗裂及抗震等要求。
参考文献:
[1] 张衡、周俊. 浅谈变电站框架结构设计[J].科技资讯,2002,(03):35~39.
中图分类号:TM77 文献标识码:A 文章编号:1672-3791(2014)01(a)-0056-01
变电站继电保护对户外柜的机械刚度和强度都有很高要求,机柜必须要能够承载一定的电气应力以及机械应力的材料构成,并且要使这些材料能够在恶劣环境下保持完整,不受环境影响。因此,外柜机的机柜表面应该涂抹上防腐材料,做好防腐保护工作,确保机械结构设计合理,方便操作,使用安全并且便于机械维修。
1 变电站继电保护户外柜的基本结构及其材料准备
1.1 变电站继电保护户外柜的结构
变电站继电保护户外柜的结构不止一种形式,它可以分为双层密封柜与单层密封柜,装配方式也有两种,分别是组装式、全焊式。单层密封柜在结构设计上具有很多优势,例如它的设计比较简单,并且制作成本低等,不过它也存在不足,热特性太差就是它最大的缺陷。双层密封柜与单层密封贵特点刚好相反,它的结构比较复杂,制作成本很高,不过它的热特性很好,方便控制。
另外,组装机柜的结构很复杂,制作成本高,不过它在流水线生产中非常适用。全焊机柜制作成本低,结构设计简单,不过它加工起来比组装柜要复杂,在流水生产线中并不适用。
1.2 变电站继电保护户外柜结构设计的材料准备
通常,为了使变电站继电保护户外柜能够适应室外的恶劣环境,会使用不锈钢作为机柜的主要材料,这样才能避免其因外界污染而生锈,甚至腐蚀,不过制作成本偏高。如果等铝板氧化后,在其表面做好喷涂工作,这样也能够达到防污染的目的。不过采取这种方式有一个缺陷,就是柜机的承受及其防护能力会大大降低。因此,户外机的设计一定要有针对性,把问题考虑全面。一般的钢板
柜机在机械强度上不存在任何问题,不过它无法经受外的恶劣环境,为了改变这个现状,必须要先对其进行必要的处理,例如采取非电解涂锌方法就是对它最好的处理方式,虽然它的制作流程比较复杂,但是制作成本低,隔热效果非常好。
2 变电站继电保护户外柜的防水、防尘设计
2.1 机械防水结构设计
如果有水侵入到户外柜的内部,变电站的各种设备会因此受损,甚至可能会被完全破坏,这就要求户外柜能够不受恶劣天气环境的影响。因此,在户外柜需要以机柜的结构特点和安装方法为依据来设计。一般来说,二次机柜的摆放都是垂直放置,柜顶的设计就比较特别,它要求设计成防雨帽的形状,以便最大限度为户外柜遮挡雨水,使户外柜不被雨水侵入。防雨帽一定要有足够的面积才能够起到保护柜机的作用,其上表面需要设计一定坡度,以免形成积水,周围设计成垂直样式,方便与户外柜主体进行装配。
2.2 机械防尘结构设计
变电站继电器保护外柜机的集成度很高,不过其材料强度偏低。一旦有较大的固体颗粒物侵入到设备中,便会给设备造成很大损害。机柜设计一定要具备防尘功能,否则,无法确保它日常工作的正常运转。通常情况下,机柜的防尘级别要达到IP5X才能视为合格产品。在对外柜机进行设计时,要对做好对柜壁缝隙的处理工作,并且在防尘垫周围要具备弹力,控制好弹性压缩的距离。同时,对通风口也要进行处理,工作人员可以利用凝胶到堵住通风口,不过此时要考虑到凝胶的性能,观察期是否能够适应室外的恶劣环境条件,如果能够达到要求,便可以使用,也要定期做好更换与维护工作。
2.3 变电站继电保护户外机的防火结构设计
着火事故在电气设备中很常见,变电站继电保护户外机的设计一定要把防火功能考虑在范围内,在设计时尽量减少内部易燃材料的使用数量,如果出现引火现象,一定要把火势控制在机柜内部。在材料选择上要特别注意尽可能选择不易致燃的材料。户外柜机的安装与其他设施没有太大关联,它比较独立,因此,其它设备可以与它保持适当距离,避免发生火灾时设备受到牵连,损失会更加严重。机柜内还可以设置防火隔挡板,防止火势肆意蔓延。
2.4 照明设施设计
机械设备的夜间维修工作对于工作人员来说很有难度,夜间由于光线比较暗,如果没有照明设备,工作人员的工作很难开展下去。因此,机柜可以安装照明装备,为工作人员的夜间维修工作创造一个良好的环境。
3 结语
变电站继电保护户外柜机械结构的设计需要从多个方面来进行考虑,本文主要介绍了户外柜的基本结构与材料准备,并对如何做好户外柜的防护设计进行了详细分析,为设计出完美的户外柜提供了理论条件。
参考文献
[1] 邸凯,常鲜戎,刘寒.圈定保护启动范围的变电站继电保护仿真模型的开发[J].电力系统保护与控制,2011(18):134-138.
中图分类号:TM411+.4 文献标识码:A
1 智能变电站的含义
智能变电站是智能电网建设的重要节点之一,是在数字化变电站基础上发展形成的新一代变电站。随着经济与科技的发展,风电、光伏等新能源电力的应用越来越多,这对传统的电力系统设备提出了巨大的挑战。在这种背景下,电力系统的安全性和可靠性必须提高,作为连接用户和发电站之间的变电站的结构设计也必须进一步优化。计算机技术以及通信技术的飞速发展,为解决电力系统和变电站所面临的问题提供了新的解决方法——智能变电站,它能将智能化一次设备和网络化二次设备进一步融合起来。依靠先进、安全、集成和低碳环保的智能化设施,智能变电站能够自动地完成信息的收集、分析、控制以及管理等工作,能够使得全站的信息数字化并且信息能够及时全面地得以共享,与此同时,智能变电站还具有通过及时分析数据为电网作决策提供信息支持以及自动控制的功能。依靠智能变电站,电网的工作不仅更加低碳环保,效率更高,而且能够消除很多的安全隐患。智能变电站能够为电网采集全面且及时的数据,通过对数据进行监测、控制和分析,为电网做出正确决策提供可靠的信息支持,同时它也是电网执行命令的部分,因此对智能变电站的结构设计进行优化具有重大的意义。
2 智能变电站二次系统配置方案
智能变电站以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,在智能变电站的发展中,随着装备制造技术、工艺的发展及建设、运行经验的积累,其一、二次系统最终将融合为一体,但目前的技术发展水平还无法实现。针对二次系统,可以在光纤以太网基础上,进行优化配置:将主保护和计量系统分布式就地实现,后备保护采用站域——广域后备保护系统,本地测量和整定与调度中心整定相结合,以达到后备保护的最优配合和最小的通信负担。
2.1 保护配置
其中,保护配置包括线路保护、变压器保护和母线保护。
2.1.1 主保护原理:线路保护采用速度更快的采样值差动和暂态量保护;变压器保护采用了可以避开励磁涌流影响的广义瞬时功率保护原理作为差动保护的辅助。两种新的保护原理都易于实现。
2.1.2 采用具有智能决策功能的广域后备保护系统,集中全网信息进行后备保护在线整定,并且所需通信量少,数据更新速度快。
2.1.3 保护的实现方式:将原来集控室内的主保护功能下放到智能一次设备单元内就地实现,简化了布线,减少了通信网络的负担。母线主保护采用具有主站的分布式差动和集中式母线保护的实现方式。
2.2 计量配置
计量系统创新地提出测量计量功能一体化为计量模块,计量模块的预处理数据为三态数据,三态数据(稳态数据,暂态数据,动态数据)统一采集和标准化。通过分析计量模块的误差量值溯源得到,在忽略算法误差情况下,误差主要来自于互感器,由于全站采用高精度的光学互感器,计量模块的精度要求完全满足计量规程的要求。既可以实现现场检验,也可以实现远程检验。通过计量模块在通信方面的优势,实现智能变电站与大用户互动,智能变电站具有向大用户实时传送电价、电量、电能质量及电网负荷信息的功能,支持电力交易的有效开展,实现资源的优化配置;激励电力市场主体参与电网安全管理,从而实现智能电网各环节的协调运行。
2.3 通信配置
现阶段的智能变电站内通信设备配置与数字化变电站及传统变电站基本相同,但随着电网中智能变电站投运数量的不断增加,快速增长的采集数据量的不断汇聚,对光纤通信传输网络带宽和传输可靠性提出更高要求。因此,通信平台的建设与改造必须同步进行。
3 智能变电站二次系统设计与实现
3.1 系统构成
变电站二次系统在功能逻辑上分为站控层、间隔层和过程层。站控层由主机、操作员站、远动通信装置、保护故障信息子站和其他各种功能站构成,提供站内运行的联系界面,实现管理控制间隔层、过程层设备等功能,形成全站监控、管理中心,并与远方监控/调度中心通信。间隔层由保护、测控、计量、录波、相量测量等若干子系统组成,在站控层及网络失效情况下,仍能独立完成间隔层设备的就地监控功能。过程层由互感器、合并单元、智能终端等构成,完成与一次设备相关的功能,包括实时运行电气量的采集、设备运行状态的监测、控制命令的执行等。
其中过程层最终发展目标为智能一次设备,就是一次设备集成互感器、智能终端等,实现在一次设备上直接的数字化接口。目前投运的智能站采取设置就地智能终端箱的方式,将一次设备运行状态、控制等信号和命令通过智能终端转换成数字化信号。
3.2 网络结构
过程层网络按照电压等级分别组网。双重化配置的保护及安全自动装置应分别接入不同的过程层网络;单套配置的保护及安全自动装置、测控装置宜同时接入两套不同的过程层网络,并采用相互独立的数据接口控制器。220kV及以上变电站站控层、间隔层网络采用双重化星形以太网络,110kV变电站站控层、间隔层网络采用单星形以太网络。总之,依据不同电压等级和电气一次主接线配置不同的网络形式,有双星形、单星形、点对点等。鉴于对变电站运行维护及网络安全方面的考虑,智能变电站在兼顾网络跳闸方式的同时仍保留直采直跳的方式,尤其对高电压等级、联网运行的变电站。
3.3 二次设备的配置原则
站控层设备的配置,以220kV变电站为例,主机按照双套配置,对于无人值班变电站主机可兼操作员工作站和工程师站。保护及故障信息子站应与变电站系统共享信息采集,不独立配置。远动通信装置也双套配置。①隔层设备测控装置独立配置时,应单套配置,220kV电压等级若采用继电保护就地安装时,采用保护测控一体化装置,110kV及以下电压等级推荐采用保护测控一体化装置。对于继电保护装置的配置与常规变电站配置原则一致,220kV及以上电压等级按照双重化原则配置。故障录波及网络分析记录装置,对于220kV变电站按照电压等级分别配置,主变压器单独配置。110kV及以下变电站统一配置。66kV及以上独立配置电能计量表计,计费关口满足相应规程规范要求。设置网络打印机,通过变电站二次系统的工程师站打印全站各装置的保护告警、事件、波形等数据,取消装置屏上的打印机。②程层设备的配置原则,220kV-750kV除母线外,智能终端宜冗余配置。66kV及以下配电装置采用开关柜布置时不配置智能终端。110kV及以上主变压器本体配置单套的智能终端。智能终端分散布置于配电装置场地智能组件柜内。合并单元配置原则:220kV及以上电压等级各间隔冗余配置,110kV及以下电压等级各间隔单套配置,双重化保护的主变各侧冗余配置,同一间隔内电压互感器和电流互感器合用一个合并单元。③络通信设备配置原则:220kV及以上电压等级变电站的站控层网络交换机冗余配置,每台交换机端口数量应满足实际工程需要。一般采用100M电口,站控层交换机之间级联端口采用1000M端口。当交换机处于同一建筑物内且距离较短时采用电口连接,否则需采用光口互联。间隔层网络交换机按照设备室或电压等级来配置,交换机端口数量满足工程规模要求。过程层交换机按照间隔配置,每台交换机的光纤接入数量不超过16对,任两台智能电子设备之间的数据传输路由不超过4个交换机。对于规模较大的变电站,其间隔层和过程层需配置大量的交换机,与常规变电站在配置上的主要差别也在于此,采用网络方式,就多了交换机这一环节,当交换机出现故障,可能引发多个间隔的保护拒动,近而造成大的事故发生。因此交换机的可靠性是智能变电站安全稳定运行的关键。
结语
在实现智能电网的建设过程中,智能变电站建设始终是智能电网建设的核心问题之一。为了实现智能变电站在智能电网中的支撑作用,要求对当前变电站二次系统的架构体系不断进行升级与改进,发挥智能变电站的高度集成、兼容、互动、协同功能。本文从保护、计量及通信等方面,对智能变电站二次系统的配置方案及其设计与实现进行了有益的探讨。应该指出的是,随着科技的不断进步和装备制造水平的不断提高,智能变电站的一次、二次系统必将融为一体。
参考文献
[1]肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009(09).
一、前言
当前,电力行业的设施建设逐渐成为了我国经济发展的助力,因此,为了保证我国各种用电设备的正常使用,对现有的变电站进行改造建设的工程项目数量越来越多。变电站土建结构的设计和施工的基础环节是设计施工环节。如果土建结构的施工设计中出现问题,则会影响后续的施工架设,导致资源浪费,同时影响用电客户的用电质量,并带来一定的安全隐患,有时甚至危及他人的生命安全。因此,我们需要高度重视变电站土建结构设计施工的规范,保证施工的合理性、科学性、可靠性。
二、问题分析
1、选址问题
根据变电站的具体特点可以了解到,变电站站内的大部分设备具有大电流的特性,且各电路之间相互穿插,很容易受到外界环境的影响,比如地震、山洪等恶劣环境。这都将会影响变电站内部设备的正常工作,并且发生线路短路的概率大大增加,进而引起变电站发生火灾等事故,给变电站的财产安全和人员的人身安全带来严重威胁,造成不可弥补的后果。所以,变电站的设计选址十分重要。但是在设计的过程中,很多变电站土建结构设计人员没有充分考虑地址特点对变电站的影响,导致其在设计的前期不能进行周密的考察,进而导致变电站的地理位置选择不科学,最后影响变电站的正常使用。
2、基础结构稳定性
变电站内部建筑结构设计质量的好坏,对其建筑物的质量和使用寿命具有很大的影响。如果其在基础建设的过程中,没有保证其结构设计的稳定性,则大大影响其本身的质量及功能。建筑结构问题会使电力行业变电站的正常运营受到威胁。地基建设和混凝土施工建设是当前建筑工程施工建设的主要问题,影响着建筑结构的基础性和使用持久性。
3、站内布局
经过对当前变电站实地考察发现,现在有很多变电站内部的设计格局不科学。变电站内部不单单有建筑结构,还有很多电气设备,而大部分电气设备的放置环境需要满足设备运行的基本条件。因此,变电站站内布局的规划对变电站内部设备运行的稳定性具有重大影响。但是,当前许多从电站设计的工作人员本身对变电站的设计经验不是很丰富,因此在设计的过程中对变电站的整体运行尚缺乏周密的考虑,最终使得变电站内部的建筑物设计结构与变电所各种电气设备的使用相违背。
三、设计要点
1、设计前做好现场调查
良好的前期准备是任何工程得以顺利开展的前提和基础。因此,我们需要在开展变电站土建结构设计工作之前,充分收集有关变电站设计的材料,并充分研究和计算变电站线路设计的最优化及变电站内部各个环节之间的关系。此外,在变电站的前期设计和规划中,要充分考虑变电站的地址选择,根据变电站的选址来考察其地点的可行性,同时综合整个变电网络的规划总图,依据实际的建设问题进行科学的分析。设计人员要对目标建设地点的地质情况进行周密的检查,考察当地的地质承载能力,同时搜集当地的建设资料,并验证建设变电站的可行性。这样才能结合实际的建设需要来选择合适的地点来进行建设施工。最后根据站内规划的情况来获得当地政府的审批,进而保证变电站顺利建成。
2、选择合适的地址
变电站的选址极为重要,不单单要求其选址的地点满足施工规划方案的有关要求,还需要确保变电站的选址可以达到各种电气设备的进出线要求。与此同时,还需要注意当地的城镇建设的总布局,并保证变电站的设计与城市规划不冲突。在变电站地址设计的过程中,要注意资源的合理配置,遵循节约的原则,并提高土地的利用效率,避免铺张浪费的现象发生。选择变电站的地址时,需要避免周围的环境对变电站造成影响。因此,在建设变电站时,往往选择污染源的上方。我国的地质环境分布较为复杂,地质类型较为丰富,因此,在变电站的设计过中,要注意避开一些特殊地貌,避免将变电站建设在断层和开风口等区域。此外,要避免将变电站设计在易滑落的山坡附近,进而避免滚石给变电站的基础设施带来损坏。在山洪多发地段,需要把变电站建设在高处。如果只能选择低处施工,则需采取一定的防洪措施,避免山洪带来的危险。
3、做好地基施工建设
变电站的地基施工建设是保证变电站内、外部结构施工持久性的关键,因此,在变电站的土建施工设计中,需要采取一定的措施来保证地基建设的质量。在变电站的施工建设中,如果遇到不良的地基,则需要采取一些加强夯实的措施来保证地基的稳定性和强硬度。施工建设中往往采用垫层法等,但是具体的加固施工需要根据实际的工程需要来确定。在沟槽建设施工中,除了常规的技术手段之外,还需要根据管道及沟槽的具体分布特点来开展相应的施工建设。
4、做好划
变电站的总规划设计需要切实满足当前所在区域的规划蓝图,并结合当地的交通资源分布情况等,做好变电站的整体规划。根据施工需要,合理地规划建筑结构工程和电气工程的建设,并在规划的过程中遵循“节约”原则,同时保证变电站的各个分期设计满足总设计规划。变电站的主控室要最大限度地避免噪声污染,并根据电缆的长度需要建设在最优的位置。
四、结束语
综上所述,变电站运行的安全性、稳定性和可靠性是保证电网正常服务群众的基础,因此,在变电站的土建结构设计过程中,需要根据当前设计中存在的普遍问题进行分析,并根据问题找寻最优的解决办法,进而通过保障设计方案的质量来保障后续施工的质量,最终促进我国电力行业服务质量的提升。
参考文献:
变电站的现场运行是一个复杂的管理体系,对技术人员和管理人员有着严格的流程操作要求。随着现代信息技术的不断发展,网络技术、即时通讯技术以及远程控制技术的出现推动了变电站现场运行的智能控制。为变电站现场运行规程的电子信息化带来了可靠的技术支持。
1 变电站现场运行管理概述
变电站内电气设备较多,不同等级的变电站其内部管理的工作内容和操作流程也不同,但是其运行管理都需要严格遵守供电公司制定的变电站现场运行规程。变电站现场运行规程管理系统正是随着当前管理信息化的潮流,在规程约束下应运而生。
1.1 变电站现场运行规程及其管理系统研发的必要性
变电站现场运行规程是由变电站运行专业人员根据上级供电系统颁发的变电站规程、制度、反事故措施、设备技术与使用说明书、图纸等资料编写而成,有着较强的技术、安全指导性。但是在以往的变电站实际的操作、管理过程中,存在着许多管理不严格、操作流程执行不彻底、变电站设备型号差异的问题,直接影响着规程功能和作用的发挥。所以,加快利用电子系统进行变电站现场运行的管理是一种重要的管理趋势,也是电力企业提高管理规范化的必由之路。
1.2 变电站现场运行规程管理系统在工作中的作用
变电站现场运行规程管理系统软件设计的目的是为了实现对变电站现场运行管理的规范化与智能化。因此该软件的设计对于推动变电站的管理有以下几点重要作用。
(1)管理系统的设计严格遵守了原有的规程与其他管理规定,并且严格依照变电站的运行参数设计,实现了对纸面规定的电子化升级。
(2)管理系统的设计,采用了运行规程结构模型,带动了远程技术服务支持的联网。
(3)管理系统提供了应对设备异常变化、信息数据处理、常规操作等方面的自动化预警和分析设计,让变电站运行管理变的严格、规范和具有前瞻性,增强了变电站运行管理的效能。
2 变电站现场运行规程管理系统软件的结构设计措施
提高变电站现场运行规程管理系统的效能,必须从系统的结构设计出发。强化基础技术的选择,完善系统结构的设计,细化软件功能的分区,实现系统在应用中的兼容与稳定,具体有以下几项措施。
2.1 选择基础技术
基础技术的选择是管理系统结构设计的关键。如果基础技术选择不恰当,则会造成软件与变电站现有的电子设备不兼容,或者运行功能不匹配的问题,严重者甚至会伤害变电设备。对此,系统在开发过程中首先要对变电站原有的电子设备、管理路径和线路设计进行分析,然后才能选择适合的基础技术。本项目主要采用J2EE技术,内部的数据库系统主要选择oracle,负责核心数据的存储和处理。实现了对变电站基础技术的对接。
2.2 设计系统结构
管理系统软件的结构设计是整个系统的关键,对于变电站的管理,系统结构是贯彻变电站运行管理命令的重要渠道。因此对于结构的设计,要制定完整并且符合实际工作需要的运行结构。对于规程管理系统的结构设计,从变电站实际工作出发,要建立自上而下的系统结构层级,依次是应用技术、框架应用技术客户端应用,保证变电站在技术管理上的优先级。
2.3 制定软件功能
对于变电站的软件管理系统,需要在软件的功能上进行科学的设计和分区。变电站的管理是一项严谨、复杂的体系化工作。因此软件功能在设计的过程中,必须符合具体工作的需要,不能过于理想化。在与一线工作人员进行全面的沟通和交流,充分掌握变电站管理中遇到的问题后,实现软件功能对解决实际问题的促进功能,减轻工作人员的工作负担。具体而言,规程管理系统主要按照以下功能进行分区:工作台、参数设置、模块维护、初始化规程、编写规程。
2.4 规范应用条件
为了实现对变电站规程管理系统的设计目标,必须对软件的运行条件进行科学的设计。唯有如此,才能在软件的下载、安装和运行后不至于出现卡机、故障等问题、妨碍变电站原有的运行管理。本系统主要针对数据库服务器、应用服务器和客户端运行环境进行了参照设计:
数据库服务器:具备2GHz的CPU、内存:8G、200G及以上硬盘空间;Windows 2003及以上版本操作系统,Oracle11g服务器等。
应用服务器:CPU:2 GHz ,内存:8G,硬盘空间:200 G以上,软件运行环境:Windows 2003及以上版本。
客户端:具备1.4GHz的CPU、内存:8G、20G及以上硬盘空间、IE8.0及以上浏览器、Microsoft office 2003及以上版本办公软件。同时配备网络(10/100MB/s网卡),保证通畅无阻、网速较快。
通过以上具体的设计措施,在有限的软件开发时间和资源投入下,最大限度的保证了软件系统在变电站管理中的高效和便捷。
3 结束语
变电站现场运行规程管理系统软件的结构设计已经初步形成,经实践检验具备良好的管理效能,当然我们也需要在未来的工作中不断学习和实践,掌握信息化的管理方式,充分了解现有系统的不足之处,才能挖掘出深层次需求,实现对变电站安全管理和现场运行管理的改革和创新。
参考文献