你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661 订阅热线:400-838-9662
当前位置: 首页 精选范文 大气污染主要因子

大气污染主要因子合集13篇

时间:2023-10-11 15:59:04

大气污染主要因子

大气污染主要因子篇1

1仪器及分析方法

分析仪器分别为:PE-AAnalyst原子吸收分光光度计,砷化氢发生装置。砷采用二乙氨基二硫代甲酸银光度法,镍、铜、铅、镉采用原子吸收分光光度法。

2数据处理与质量控制

数据统计分析采用均值型污染指数法,评价标准采用清洁对照点监测值进行评价。质量控制是保证监测结果准确可靠的必要措施。在监测过程中,根据质控程序对所用仪器参数进行校准。对实验室分析采用带国家标准样品和加标回收措施进行准确度控制。结果表明,曲线斜率b、截距a和相关系数r均在规定的范围内,标准样品和加标回收率实验均符合要求。

结果与分析

1蔬菜基地环境空气中重金属污染特征

按照环境空气综合污染指数法,对环境空气中重金属污染分级(分级依据为国家环境监测总站环境质量报告书编写技术规定)。即:P<4轻污染;4<P<6中污染;6<P<8重污染;P>8严重污染。环境空气质量分级见表1。环境空气中重金属污染区域特征为:西湾、东湾、下四分、中盘一带远郊区(蔬菜种植区)为轻污染区;白家嘴一带近郊区为中污染区;高崖子近城区为重污染区。环境空气中重金属监测指标污染特征主要以Ni、Cu污染为主,Cd、Pb污染为辅,并且Ni、Cu污染为重污染,Cd为中污染,Pb为轻度污染,As无污染。

2蔬菜基地土壤中重金属污染特征

依据中国文化书院《环境影响评价》中关于土壤环境质量评价方法中的土壤分级方法,由于土壤本身尚无分级标准,所以土壤的分级一般都按综合污染指数而定。P<1定为未受污染,P>1为已污染,P值越大,污染越严重。根据这一分级规则,由表2可见,新华、东湾、西湾一带的土壤未受重金属污染,土壤环境质量较好;其余测点均为轻度污染。土壤重金属污染特征表现为以Cd污染为主,其次为Ni,两项指标均为轻度污染,其它三项指标无污染,但Cu却处于将要污染的临界值。由此可见,金昌市土壤中重金属污染表现出很强的地域特征,即以冶炼厂为座标,沿东南方向,从高崖子至西湾、东湾,污染程度依次减轻。

3蔬菜中重金属污染特征

由于蔬菜中无重金属评价标准和分级标准,故本次评价是参照土壤的分级方法,采用对照点新华测点监测值作为评价标准的,其污染特征具有一定的区域性。根据土壤的分级规则,城郊蔬菜种植区西湾与东湾所采集的四种最常见蔬菜中,重金属含量相对新华而言均属轻度污染,且污染水平基本相当,其中西红柿相对而言污染偏高,辣椒与豆角偏低。蔬菜的区域污染特征为:离市区较近的西湾蔬菜中重金属污染重于离市区较远的东湾,即离市区越近,重金属污染越重。蔬菜中各项重金属指标的污染特征为:各项指标中重金属污染特征不十分显著,表现为As污染略高于其它指标,Cd污染略低于其它指标,其余指标污染水平相当。

污染原因分析

1环境空气

从环境空气中重金属污染特征分析,可清楚地看到,环境空气中重金属污染地域特征很明显是以冶炼厂为中心,向东南、西北两个方向展开,并且呈逐渐减弱之势,由此也说明造成环境空气中重金属污染的原因,主要是冶炼烟气中排放的大量金属粉尘。其次气象因素也是很重要的原因之一,这两个方向区域的环境空气中重金属污染严重,是因为金昌市夏季的主导风向为西北风与东南风,因此,导致这部分区域环境空气中重金属污染加重。

2土壤

根据土壤中重金属污染特征,再加上这一带灌溉用水为金川峡水库地表水,而金昌市地表水中重金属指标均达到《地表水环境质量标准》GB3838-2002中二级标准,不会对土壤造成污染,由此可以得出造成高崖子一带土壤中重金属污染的主要原因是金川公司冶炼烟气所致。

3蔬菜

根据蔬菜中重金属污染特征,各区域蔬菜中重金属监测结果同清洁对照点相比,相差不是很大,但还是表现出了地域特点,即离冶炼厂越近,蔬菜中重金属污染越重,可以说造成蔬菜中重金属污染的原因是由冶炼烟气造成的。

结语

通过对金昌市蔬菜基地环境空气、土壤、蔬菜中重金属污染特征研究,得出蔬菜基地环境空气已不同程度受到重金属的污染,且表现为离城区越近重金属污染程度越重;而土壤、蔬菜未受重金属污染,但仍表现出很明显的污染地域特征,即离市区较近区域土壤及蔬菜中重金属含量高于离市区较远的区域。表明金川公司冶炼烟气对金昌市蔬菜基地环境质量造成了不同程度的影响,应引起各方面的关注。

防治措施

1制定污染防治规划

金昌市有关部门应结合市区环境空气中重金属污染现状,划定重金属污染规划区,制定规划区重金属污染防治规划,确定目标,逐年实施,控制污染。

2形成各部门齐抓共管机制

污染防治工作涉及部门广泛,如环保、城建、林业、水利等部门,应建立起由政府对规划区环境空气质量负责,环保部门统一组织协调、监督管理,各部门通力合作,齐抓共管的管理运行机制。

3建立制度,规范管理

环境空气中重金属污染防治工作,技术难度大,没有成熟的管理经验可以借鉴。因此,要建立切实可行的管理制度,使污染防治工作有章可循,有法可依,逐步走上法制化轨道。

4强化源头管理,推行清洁生产

金昌市的环境污染与生产工艺技术落后、管理不善密切相关。冶炼过程的采掘率和金属回收率较低,这样,既浪费了资源,又污染了环境。因此,要依靠科技进步,积极探索研究冶炼烟气中重金属回收利用的新途径,推行清洁生产工艺,以减少污染物排放。

5加强“菜篮子”产品产地环境管理

在所划定的“菜篮子”产地设置必要的防治污染的隔离带或缓冲区,在其周边要严格控制工业污染源的排放,对已经投产的有污染且不达标的建设项目,必须严格监管,依法停产治理,对逾期不能达标的企业,建议政府对其关闭。加强对“菜篮子”产品产地的环境监督管理力度,及时调查处理“菜篮子”产地环境污染事故与纠纷,并对“菜篮子”产品产地环境质量实施动态监测与评价,为政府选择划定“菜篮子”产品产地提供依据。

6充分发挥环境监测的技术监督作用

大气污染主要因子篇2

中图分类号:TU2 文献标识码:A 文章编号:1674-098X(2013)03(a)-0-02

1 问题分析

针对海量数据,应从整体上对污染程度进行评价。而内梅罗综合污染指数法评价土壤的综合污染,以突出最高一项污染指数的作用。在土壤中有很多重金属元素有相似的存在形式和传播途径,并且有相同的污染源,因此在进行通过数据分析,说明重金属污染的主要原因时,基于统计原理建立起来正态模型,不同的重金属有不同的传播方式,其大体分为大气传播、水体传播、固体传播,因金属元素在土壤中大部分以稳定形态存在,故忽略重金属元素在固体土壤中的传播。根据收集的信息和题目中的有关资料对重金属污染物的传播特征的分析,可将8种重金属污染物分为两类。一类是在大气中传播,而大气传播的污染物最终经空气沉降进入土壤;一类是在土壤中传播。对于在大气中传播的重金属污染物,文章建立重金属污染物在气体中扩散模型,根据所在的空间任意位置土壤表面的重金属污染物浓度的多少来确立污染源的位置,函数的最大值即为污染源的位置;同理建立了重金属污染物在土壤中的传播模型。

2 模型建立及求解

2.1 土壤的环境质量评价与分级

2.1.1 单因子指数法

2.1.3 评价分级标准

该文采用GB15618-1995《土壤环境质量标准》。土壤环境质量综合评价指数分级参考了《绿色食品产地环境质量现状评价纲要》中规定进行分级,等级划分为1等级属清洁水平适合发展有机食品;2级属尚清洁水平适合发展无公害食品生产;3级以后属于污染水平,不适宜无公害农产品的生产。

计算得到综合污染评价指标后,通过分析比较得出该城区的各个功能区重金属的污染程度由高至低排序为:工业区主干道区生活区公园绿地区山区。

2.2 重金属污染的原因分析

(2)计算标准化数据的相关系数阵,求出相关系数矩阵的特征值和特征向量。

(3)进行正交变换,使用方差最大法。得到5个主因子提供了源资料的87.756%的信息,满足因子分析的原则,而且从上表可以看出旋转前后总的累计贡献率没有发生变化,即总的信息量没有损失,采用此标准下的分析结果。

(4)确定因子个数,计算因子得分,进行统计分析。

2.2.2 金属元素污染原因

根据该市空间立体分布图和各功能区的分布图,结合各个功能区的分布特点,由重金属元素空间分布图分析可知:(1)主因子1体现出的三个主要变量因子为Ni、Cu Cr三种重金属元素。Ni元素广泛的分布在该城市各个功能区。分析可能是易于传播的污染介质造成的,如煤的燃烧产生的粉尘、颗粒,以及含有Ni元素的岩石的风化等;Cu元素及Cr元素分布在城市的西南方,分布着工业区、生活区、公园绿地区、主干道区。Cu、Cr两种金属元素是工业生产中所形成的废气、废水和固体排放物中均大量存在的污染物。(2)主因子2体现出两个主要变量因子为Pb、Cd,其在来源上关联较密切,两种重金属元素的最大值均出现在工业区。其在空间上近似可认为是一个带状的污染源,这主要因为Pb主要来自市中心交通汽车尾气的排放,而且在研究取得西北部有两个明显的富集中心,形成一个高值区。该市表层土壤中的Cd含量市中心地带比西北城区高,东南城区又比市中心地带高,恰好与当地的主风向相一致,表明大气中含Cd污染物的干湿沉降也是造成土壤Cd污染的一个重要原因。(3)主因子3体现出一个主要变量因子Hg。该金属元素在生活区分布含量偏高,污染较为严重,其主要的污染原因可为人类活动造成水体汞污染,来自氯碱、塑料、电池、电子等工业排放的废水。(4)主因子4体现出一个主要变量因子As,该金属元素在各个功能区的分布较平均,这是因为的污染源多样。大气含砷污染除岩石风化、火山爆发等自然原因外,主要来自工业生产及含砷农药的使用、煤的燃烧。含砷废水、农药及烟尘都会污染土壤。(5)主因子5体现出一个主要变量因子,的分布具有明显的特点,在城市的西部富集,产生一高值区,该部靠近工业区,工业上的三废是其富集的主要原因。

2.3 重金属污染物传播模型

3 大气―平均风速的廓线模式

大气扩散主要是风的作用,平均风速的廓线模式是随高度变化的。在大气扩散模型中平均风速的廓线模式定义为风速随高度变化的曲线。风速的线性数学表达方式成为风速廓线模式。根据我国《指定地方天气污染物排放标准的技术原则和方法》(GB/T 3840-1991)所制定的方法,采用米函数风速廓线模式。

幂函数分素廓线模式是在近地层、中性层、平坦下垫面的条件下推到出来的。该模式应用高度较高,可达到300m或更高的高度,且随应用高度增加,精度下降。

4 水体

6 模型评价及推广

6.1 模型评价

6.1.1 优点:运用主成分分析方法将多维因子纳入同一系统进行定量化研究、理论成熟的多元统计分析方法。通过分析变量之间的相关性,使得所反映信息重叠的变量被某一主成分替代,减少了变量数目,减少了变量数目,从而降低了系统评价的复杂性。再以方差贡献率作为每个主成分的权重,由每个主成分的得分加权即可完成对水质的综合评价。

6.1.2 缺点:题目所给数据有限且单一,所建模型不足以全面反映该市土壤环境污染特征。.对于模型三,仅考虑了金属元素传播的部分途径,具有局限性。

7 模型推广

模型一可推广用于投资风险评价;模型二可用于研究放射性物质的污染;模型三还可推广到研究病菌在空气中的传播;模型四可以推广到研究灰尘在空气中的扩散规律。

参考文献

大气污染主要因子篇3

引言

在进行经济建设的同时总会伴随着对环境的侵害,环境监测目的就是要及时的发现危害环境的因素,将其降到最低。环境污染的检测项目多而杂,它包括水污染、固体污染、空气污染等许多的方面,而这每种污染又包含着多项的检测指标,这种多样性的检测指标给环境污染的评价与分析带来了极大的困难。也正因为如此,在进行这项工作时我们引入了因子分析法,它能很好的简化指标结构、浓缩信息、降低指标的难度,在主要信息比较充分的前提下,将各种因素进行变量分组,增强组内变量的关联性,减弱不同组别的关联性,逐渐将环境检测的指标集中在几个互不影响的因素上,减小问题分析的难度。

一、因子分析的步骤和原理

因子分析从与最初的变量的相关系数的矩阵出发,然后寻找与问题关联性较大的几个难以观测的因子,通过这几个因子来对实物的原始变量之间的关联系数。例如共有n个样本数,在每个样品n中有P个指标,那么我们就可以列出相应的矩阵,它的一般步骤为:①计算标准化数据在矩阵中的相关系数,再与此同时要求得相关系数的矩阵特殊根,和与此相互对应的正交标准化的能反映特征的向量E;②原始数据的标准化处理。在进行因子分析中的标准化应用公式中既有样本的均值也存在样本的标准值,通过标准化的运算来消除原始变量中不同的量纲的影响;③若是特征根的贡献率累计达到85%,则可以得到到一个全新的因子载荷的矩阵;④根据在各式或是检测中得到的样品因子得分,对其进行系统的排序,并且进一步进行聚类分析;⑤对由特征根积累率中得来的载荷矩阵施行方差最大值的正交旋转变换,经过旋转后的因子载荷矩阵的每个列向量对应着每个公共因子。进行列向量的旋转变换的目的是为了使得每个公因子只与对应的若干个原始变量有关联性,如此就能增强各个因子的可解释性。

二、环境污染的因子分析

1.数据收集

在进行环境污染各项因子的分析之初对对各个地区的环境数据的检测是必不可少的,而且是至关重要的,它是所用工作的基础,数据收集工作的好坏直接影响整个分析过程的好坏,通过对全国的各个主要地区的生活和工业污染物的排放量数据的收集,并且选取了九个主要的环境污染检测的指标,笔者将以这些数据为基础进行分析研究。

2.数据分析和处理

在进行数据收集的过程中,我们发现我国地区的数据是不具备的。由于地理位置特殊,所以在进行数据填补时用全国平均值并不是很科学。对环境有着极大影响的烟尘以及二氧化硫绝大多数都是来自生活和工业排放,可以根据全国烟尘和二氧化硫的排放比例来估算我国地区的排放总量,这种做法是比较科学的。

3.公因子的提取和分析

通过SPSS软件的引用可以科学的计算出特征向量和特征根,而且这些数据的累计贡献率达到了86.54%,这个数据说明提取的3个公因子的信息含量是几乎包含了原来9个污染指标的全部信息,可以知道进行“降维”是比较成功。通过上面的分析可以确定提取3个公因子,同时还可以得到初始的因子载荷矩阵,同时使用最大方差的旋转法可以顺便得到旋转后的因子载荷矩阵。

从上表可以知道,工业粉尘和二氧化硫的排放总量,工业废气和烟尘的排放总量,在第一公因子F1上所具有的的载荷是比较大的,然而其它污染的指标在F1上的载荷并不大。从表中我们可以知道除了X6是工业固体废物的产生量,其他的项目都是工业空气的污染指标,所以F1也可以称为工业大气污染因子,以此类推可以分别进行命名。

三、各地区环境污染的分析和比较

通过上面进行的可解释性的公共因子的命名后,还可以根据SPSS函数式的分析来研究环境的污染情况,从中我们不难发现山东、四川、广西、河南、河北及辽宁在第一公因子上的得分是相对较高的,这些省份的额固体废弃物和工业大气污染程度比较高,原因是多方面的,其中比较主要的原因是这些污染比较严重的省份中有不少是属于建国后不久确立的国家老工业基地,由于工业密集型高,而且生产的耗能高,科技含量低,以环境污染的代价换取经济的增长;还有的企业是在乡镇,改革开放之后,乡镇经济也快速发展,许多重污染企业为了逃避城市过高的治污费用而将企业转而设在了比较偏远的乡镇,乡镇的企业数量急剧增加,并且乡镇政府对环境治理及缺乏经验又缺乏意识,这就造成了一些乡镇在大气污染因子上得分比较高,我们得到各地区的因子得分表:

相较于上面的这些省份,我国的北京、上海、广州、、青海、贵州等地区的这几项因子的得分就要低得多了,可以清楚地发现,这些得分比较低的城市要么是比较偏远的地区,要么是比较发达的地区,这些比较发达的城市的经济来源不再是传统的工业制造或是能源生产了,而更多的是以航运、通信、金融、教育、服务业等为经济支撑,这些产业基本上是不会产生大量的污染物的,这也就是为什么这些地区的污染因子数不高的原因了。

在表中还可以发现,江苏、浙江、上海、山西、湖北等地的第二公因子数比较高,这说明这些地区的水污染比较严重,研究发现这些地区要么是经济产业结构中依托水资源比较重,要么是水资源比较丰富、人口众多、分散比较广的地区。而贵州、山西、内蒙等地的第三因子得分比较高,这说明该地生活空气污染比较严重,贵州得分最高,这与其所处的地理环境相关,贵州所处地区属于我国酸雨控制区,酸雨污染严重。而像山西、内蒙都属于能源大省,煤储量极为丰富,在采煤用煤的过程中不可避免的会带来一定的影响。

通过上面的分析比较可以初步的得出一些结论。第一类,特殊污染地区:山西(水污染轻微,工业大气污染严重)、广东(工业大气污染轻微、水污染严重);第二类,水污染居中、工业大气污染较重的地区:四川、广西、河北、河南、山东;第三类,工业大气污染居中、水污染较重的地区:浙江、江苏、湖南、湖北;第四类,工业大气污染轻微、水污染居中的地区:北京、上海、贵州;第五类,水污染轻微、工业大气污染居中的地区:内蒙、江西、安徽;第六类,水污染和工业大气污染都轻微的地区:天津、宁夏、海南、新疆、、青海、云南、甘肃。

总之,因子分析法是一种能够大大减少工作量、提高工作效率、简化工作程序、抓住主要矛盾的工作方法。它的使用为环境污染的科学检测与评价提供了可能。

参考文献:

大气污染主要因子篇4

1 研究背景及目的

自我国改革开放以来,国民的生产力和民生活水平有了很大提高,经济得到了快速地发展,但是经济增长同时却带来了严重的环境污染问题,其中废气污染就是其中之一。曾经有报告指出,全球的空气污染情况最严重的10个城市中,中国就有7个上榜。我门都知道SO2是形成酸雨的主要污染物,在我国大部分城市SO2染保持在较高水平,全国一共形成了华中、华东、华南多个酸雨区,其中以华中酸雨区最为严重为重,这对于我国农业的长久发展极为不利的。城市机动车尾气排放总量增加,氮氧化物污染明显增多,而NO2会造成二次污染。据不完全统计仅仅有害雾霾致使中国在医疗方面耗费十亿美元,而由于我国空气中的烟尘颗粒物每年大约致使几十万人感染上慢性支气管疾病。城市大气污染问题早已经成为全世界各国共同面临的难题之一,受到了各国政府的高度关注,解决这一问题需要全世界人们的共同努力。

在这种背景下,对于主要城市废气中主要污染物排放进行研究,是掌握我国城市大气污染的现状,找到城市大气污染原因,探索解决的办法的必要经历。另外也对于建设中国特色的社会主义有着非常重大的意义。

研究目的如下:通过对主要城市废气中主要污染物的各项指标进行分析,第一,找到主要污染物之间是否具有某些必然联系。第二,努力发现影响大气污染的因素。第三,分析不同城镇之间大气污染物水平的差异,为针对不同的污染程度的城市制定合适的治理办法提供可靠依据。

2 研究方法

地球上,人类的呼吸都离不开氧气,但是如果我们赖以生存的空气遭到了污染,那么人类的身体健康必然受到威胁。由此我们采用的数据指标有:“工业二氧化硫排放量”“工业氮氧化物排放量”“工业烟粉尘排放量”“生活二氧化硫排放量”“生活氮氧化物排放量”和“生活烟尘排放量”6个指标。以下本文出现的变量分别对应用“X1”、“X2”、“X3”、“X4”、“X5”和“X6”表示。本研究采用的数据是《主要城市废气中主要污染物排放情况(2013年)》,数据摘自《中国统计年鉴2014》816。

采用数据分析的方法主要有回归分析、相关分析、因子分析。基本思想是:首先使用回归分析、相关分析等分析方法研究用“X1”、“X2”、“X3”、“X4”、“X5”和“X6”所有构成主要城市废气中主要污染物的变量之间的关系;其次使用因子分析对构成主要城市废气中主要污染物的各个变量提取公因子;最后依据提出的公因子,运用所学的SPSS知识,加上一些数学处理工具对各城市总分进行排序。

3 研究结论

本文运用了多种统计学的方法对各城镇废气污染物进行了统计分析,加入了偏相关分析,这样有利于控制其他变量对相关性的影响。我们利用逐步回归法对各种指标进行了筛选,虽然没有考虑异方差和多重共线性的问题,但利用因子分析对经济综合指标进行了降维处理,这样就可以大大降低共线性的问题,接着利用各因子得分进行计算综合成绩,对各城市进行综合排名。

经过以上分析研究,我们从中可以了解到我国主要城市的空气质量是否存在较大的问题,这些数据是监控人类生存环境一把利器,对于我国的可持续发展具有重大的意义。例如由回归分析可得到,要想空气中工业二氧化硫排放量有所减少,可以通过降低工业烟粉尘排放量或者工业氮氧化物排放量。由因子分析和单变量扩展排序表(附表2)可知,重庆得分最高,肺气污染比较严重,这是因为重庆工业废气排放量多导致的;哈尔滨地处我国最北端,居民对煤炭的需求比较严重,所以居民生活废气排放增多,废气中染物相对较多;上海是我国的经济大市,企业众多,运输量高,居民消费水平比较高,汽车尾气是主要的废气污染。以北京为例的北部平原等内陆城市地形平缓,扩散条件相对较差,沙尘频繁,可吸入颗粒物污染严重,大气系统滞留频繁,不利条件和污染源较强导致污染。南方城市却排在了最后,处于沿海,污染源一般较少,大气扩散条件较好。改善我们的生活环境要从节能减排做起,倡导绿色的消费方式很生活习惯。

参考文献:

大气污染主要因子篇5

目前,环境空气质量评价方法可以分为单因素、单指标的简单评价和多因素、多指标的综合评价。本文主要介绍在环境空气质量评价中应用较广或新出现的评价方法在环境空气质量评价工作中的应用情况和环境空气中主要污染颗粒物及影响因素。

1 指数法

环境空气质量评价指数法是根据环境空气实测数据与标准值的大小进行比较从而判断环境空气质量的一种方法,可分为单因子指数法和综合指数法两种。

1.1 单因子指数法

单因子指数法又可分为指标对照法和概率统计法两种。单因子评价法仅对单个污染物浓度进行评价,评价结果简单直观,不能综合判断各污染物之间的相关性。

1.2 综合指数法

综合指数法通过数学运算得到综合污染指数,以表达环境空气的污染程度。常见的综合污染指数法包括环境空气污染指数法(API)和综合污染指数法。

API法计算过程简单,仅从各分指数中选取其中的最大值作为评价依据,忽略了其他污染物的作用,目前常用于空气质量日报和国家环境保护模范城市考核指标评价中。

综合污染指数法能直观反映各污染物间的比重,体现出主要污染物和次要污染物,目前主要用于环境质量报告书中评价环境空气质量的总体变化情况。

2 复杂数学模型评价法

2.1 模糊综合评价法

模糊综合评价法是一种定性、定量相结合的方法,其评价结果不仅能反映不同时间、空间环境空气质量状况和各污染因子的“贡献率”,而且能充分考虑各因子之间的相互联系。但其多采用线性加权模型,当污染因子权重较少,污染因素较多时,会使丢失部分有用信息,评价结果会出现失真、失效、均化、跳跃等现象。

2.2 灰色系统法

灰色系统法通过部分已知信息,对系统行为和演化规律进行描述和判断。目前在环境空气质量评价中应用较多的主要有灰色聚类法和灰色关联法。

灰色关联法通过分析环境空气实测浓度与标准的关联度,从而确定环境质量评价等级

2.3 物元分析法

物元分析法将评价标准、评价指标及特征作为物元,对标准和实测数据进行归一化处理,计算出节域、权重及关联度,从而建立质量评价模型,取关联度最大值对应级别为评价级别。

3、影响PM10浓度的主要因素

3.1、污染源和源强

PM的污染来源是多方面的,有些工厂在获取能源时还是用燃煤这种比较落后的方法,排出大量PM10,造成的大气污染;对一些住宅区,在冬季取暖时,主要方法也是燃煤。或者在生活中,由于一些不恰当的行为引起PM10量的上升;当地面的风速比较大时,或建筑施工过程中产生的扬尘,以及车辆行驶时因排出的气流较大而带起的扬尘都会造成空气中PM10的浓度增大;此外,汽车尾气也影响着PM10的浓度。

对于污染源的源强,大气中的污染物浓度通常与其成正比。一般情况下,可将PM10的源强分成三个时期:06~11:00属于强污染期,18:00~23:00属于次强污染期,01:00~05:00属于弱污染期。假如其他的影响因素固定不变,PM10浓度增大就是由污染源强直接引起的。

3.2、气象条件

首先是风速,若风速在阈值之内,则与PM10之间呈负相关;一旦超过阈值,地表会有沙尘扬起,上升到空中增加PM10的浓度,且风速越大,PM10的浓度越大,此时,风速和PM10的浓度呈正相关。湍流在影响大气中的污染物时,起的是稀释作用,使其越来越分散,最终降低PM10的浓度。

其次是逆温。秋冬两季,由于早晚气温低,大气层的结构比较稳定,从而引起辐射逆温,削弱了大气对流,地面风速减小,以致于排放出的PM10难以扩散,聚集在底层的狭窄空间,导致PM10的浓度越来越大。在夏季,大气的湍流比较旺盛,受其影响,大气变得不稳定,很少有逆温的现象出现,给PM10的扩散提供了有利条件。相对来说,春季的大气层结构比较稳定,常有逆温现象发生,由于傍晚的对流较强,易引起大气的不稳定,出现逆温的次数减少。

再就是其他因素。有关研究结果显示,空气湿度也影响着PM10的浓度值,且与其呈正相关,因为水汽能够吸附大气中游荡的细小颗粒物,当空气的湿度较高时,PM10的污染就会加重。而降雨其实是湿气沉降,利用雨把大气中的PM10带到地上清除,所以说雨水能够清洁大气。不但如此,当建筑施工或者交通产生地面扬尘时,降雨可减少扬尘;大气中的颗粒物其实也是雾的凝结核,一旦湿度达到饱和状态,水汽凝结,受湍流影响,悬浮低空,就是雾。遇此情形,湍流难以互换,风速和缓,大气结构相对稳定。近地面处,逆温现象多发,且强度大,层度厚,水汽容易饱和,以致于形成雾,阻碍PM10扩散,增大其浓度。此外,大风干旱天气,容易产生沙尘,影响PM10的浓度。

4、PM2.5的影响因素

一般情况下,PM2.5的浓度受很多因素的影响,包括当地经济条件、生活水平、地理及天气条件以及排放源等。当排放量在整体上固定不变时,当地的天气状况和地理条件是影响PM2.5浓度的主要因素。

逆温,逆温很大程度上影响着近地面PM2.5的浓度,逆温现象多发生于秋冬两季,此时空气对流困难,大气结构较为稳定,妨碍污染物的扩散,加重了PM2.5的污染程度;而于春夏两季,由于逆温层较薄,空气对流旺盛,有利于污染物的扩散,尤其是夏季,PM2.5的浓度最小;风速,风速主要起稀释作用,为污染物的扩散提供一定的条件;降水,相对而言,夏季降雨量大,能够扩散污染物,净化空气,降低PM2.5浓度;燃煤,多数地区冬季需要燃煤,会产生大量的污染物;植被覆盖率,夏季植物多而繁茂,树叶对颗粒物有吸附作用,从而能够减少污染物。

综上所述:从以上的质量控制结果可知,环境空气自动监测的质量控制不仅包括仪器,还包括整个监测系统。因此,我们要做好质量控制,必须保证分析环境、标准气体、管路、电磁阀和仪器等多个方面的性能指标达到要求。并且我们在人员及运营管理上常抓不懈,认真对待每个质控环节。最后,我们认为我们所建立的质量控制体系能确保监测数据的连续性、准确性和代表性,是科学管理和控制环境空气自动监测系统的有效措施。

大气污染主要因子篇6

0 引言

近年来,随着我国城市规模的逐渐扩大,对城市内的空气质量有一定影响,特别是最近几年灰霾事件频发,对大气环境和身体健康产生了极大危害。根据环境监测站统计的数据,颗粒物是城市主要的大气污染物。研究大气颗粒物污染源及其与下游污染物相关性的方法很多,其中包括主成份分析法、富集因子分析法、化学质量平衡受体模式等,特别是化学质量平衡受体模式应用比较广泛,具有可靠的稳定性及研究结果的准确性。根据大气颗粒物污染特征,以污染源解析结果为依据,提出城市重点治理污染源,并结合目前存在环境问题和管理现状,进一步提出建议性的相关环境对策。

1 数据采集及解析方法

1.1 数据采集

对灰霾期哈尔滨商业大学校园大气可吸入颗粒物进行了采样,采样时段是2012年1月2日~11日,采样天数为10天,采样流量为120 L/min,采样器为中流量总悬浮微粒采样器,仪器自动记录采样时间和体积,采样滤膜为石英纤维滤膜,采样后的尘膜要干燥48小时后称重,用重量法计算颗粒物的质量浓度,并对颗粒物进行了化学成分分析,浓度数据和化学成分均来自哈尔滨市环境监测站和课题组前期的采样及分析结果。

1.2 解析方法

1.2.1 主成分分析法(PCA)

利用SPSS统计软件对颗粒物主成分进行PCA分析,得出颗粒物的主成分类别、贡献量及贡献率,通过软件计算,提取特征值大于2的因子特征值、方差贡献率,提取的因子需概括原始变量80%以上的信息,才能全面地反映真实的主成分特征,可用其特征参数进行污染源的判定。

1.2.2 化学平衡模型(CMB)

利用CMB进行污染源解析时,采用台湾和美国源样品化学成分谱作为CMB受体模式源数据,选择源样品化学指纹时,注重污染源种类、污染源特性一致,使其指纹库中的源样品数据尽量与哈市污染源化学特性一致,重点对比土壤类型、交通设备、燃料性质、煤质以及燃烧设备等,以保证源解析结果的准确性。在受体模式运行时,应保证三个参数达标,即R须控制在0.8到1.2之间且越接近于1精度越高,DF应大于6,PERCENT MASS应在80%到120%之间且越接近于100%解析的越充分。

2 结果与讨论

2.1 PCA和CMB的定量分析

经过PCA和CMB的定量分析,通过比较两种方法的分析结果可准确推估灰霾期颗粒物的污染来源。较广泛,具有可靠的稳定性及研究结果的准确性。利用统计软件SPSS 19.0对32个大气颗粒物PM10样品的数据进行了主因子分析,主因子分析过程中剔除在各主因子中贡献均极低的3个变量Ca2+、Al、Ca,最终所选取的变量数为29种,如下表所示。

根据方差极大正交旋转因子载荷矩阵(表1)和元素的富集因子(表2)对得到的4个主因子所代表的污染源类型解析如下:主因子l中载荷较高的组分是SO42+:0.892,NO3-:0.796,Mn:0.898,S:0.967,Si:0.858,Ti:0.661,Ba:0.873,Cd:0.611,Cr:0.644,TC:0.963,OC:0.976。这一因子对大气颗粒物PM10的方差贡献率为43.834%。主因子2中载荷较高的组分是K+:0.919,Mg2+:0.969,Na+:0.955,Cl-:0.908,Na:0.759,Pb:0.955,Sr:0.980。这一因子对大气颗粒物PM10的方差贡献率为25.097%。主因子3中载荷较高的组分是F-:0.760,Ni:0.888,V:0.920,Zn:0.983,As:0.941,Cu:0.707,Fe:0.935,K:0.661。这一因子对大气颗粒物PM10的方差贡献率为21.404%。主因子4中载荷较高的组分是NH4+:0.561,EC:0.572。这一因子对大气颗粒物PM10的方差贡献率为7.446%。

2.2 各源对PM10中化学组分的分担率解析

在定性识别污染源类型的基础上,通过对主因子分析过程中所得到的方差极大因子载荷矩阵和因子得分系数矩阵进一步处理来计算绝对因子载荷和绝对主因子得分矩阵,从而定量计算出各源对PM10 ,及各化学组分的分担率及贡献值.利用绝对主因子法不仅可解析出各源对PM10的分担率及贡献值,还可解析出各源对PM10中化学组分的分担率及贡献值,结果参见表3和图1。

由表3可知,建筑水泥尘,机动车尾气尘,煤烟尘是环境空气中PM10的首要污染源,其对PM10的分担率至43.834%,土壤风沙尘和工业粉尘是对PM10贡献较大的另外两个重要的污染源,分担率分别占到25.097%和21.404%,大气颗粒通过化学反应的二次来源对PM10的贡献较小,分担率为7.446%。从表中不仅可以比较清楚地了解到PM10中各化学组分来源的具体情况,而且还可用这些数据再次验证上述对污染源类型的判断。

3 结论

(1)主成分分析法表明,Pb,S,Zn,Cd,Cu,As这6中元素来源于人为排放;Na,Pb,Sr,Mn,Ni,Ti,Ba,Cr,Fe,K这些元素的富集因子大于1小于10,主要来源于是自然污染,但也存在人为因素;Mg,V,Si这些元素的富集因子小于1,主要来自自然源污染;Pb,S,Zn,Cd,Cu,As这6中元素的富集因子变化及差异较大,说明人为污染很严重。

(2)CMB的解析结果表明:城市的主要污染来源交通尘、扬尘、煤烟尘、工业粉尘四类,其中交通尘的平均贡献率最高,扬尘在春季的贡献率最高,工业粉尘在夏季的贡献率最高,煤烟尘在冬季的贡献率最高。

大气污染主要因子篇7

室内空气污染是指因建筑材料、装饰物、家具、日常用品和生活等排放有害的化学因子、物理因子和生物因子聚集室内达到对人体身心健康产生直接、间接、或者潜在危害,从而改变室内某些原有成分的含量和增加某些有毒有害物质,导致室内空气质量下降并威胁人体健康的现象。

如果将交通工具也算在室内环境中的话,一天在室内环境中度过的时间将会超过85%。因此,可以说室内环境对人体影响最大的是大气环境,直接关系到我们的健康。污染的危害日益彰显,了解污染物的种类及其来源和它对人体健康的危害,提高人们的防范意识,采取必要的措施已显得非常必要。

一、室内主要污染物及污染源

1.有害气体的污染

(1)甲醛。甲醛是―种挥发性有机化合物,无色,具有强烈的刺激性气味。室内甲醛有多种来源,可来自室外的工业废气、汽车尾气、光化学烟雾等。室内来源主要有两方面:a.来自燃料和烟叶的不完全燃烧;b.来自建筑材料、装饰物品及生活用品、化工产品,但主要来自家具和室内装修材料的胶粘剂―― 一脉醛树脂,以及作为保温隔声建筑材料的脉醛泡沫塑料。此外,某些化纤地毯、塑料地板砖、油漆涂料等也含有一定量的甲醛。

(2)苯及苯系物。苯被国际癌症研究机构确认为是有毒的致癌物质,苯、甲苯、二甲苯是室内主要污染物之―。苯及同系物甲苯和二甲苯都为无色、有芳香气昧、易挥发、易燃、燃点低的液体。苯、甲苯和二甲苯是以蒸汽状态存在于空气中,中毒作用一般是由于吸入蒸汽或皮肤吸收所致。苯属中等毒类物质,急性中毒主要对中枢神经系统有毒害,慢性中毒主要对造血组织及神经系统有损害。

(3)总挥发性有机物(TVOC)。TVOC在室内空气中作为异类污染物是极其复杂的,而且新的种类不断被合成出来。由于它们单独的浓度低,但种类多,一般不予以逐个分别表示,以TVOC表示其总量。TVOC中除醛类外,常见的还有苯、甲苯、二甲苯、三氯乙烯、三氯甲烷、二异氰酸酷类等,主要都来源于各种涂料、粘合剂及各种人造材料等。

(4)氨。氨为无色而有强烈刺激气味的气体,氨气可通过皮肤及呼吸道引起中毒,嗅阈0.1mg/m3-1.omg/m3,引起嗅觉反应的最低浓度为2.7mg/m3。氨气因极易溶于水,对眼、喉、上呼吸道作用快,刺激性强,轻者引起充血和分泌物增多,进而可引起肺水肿。长时间接触低浓度氨,可引起喉炎、声音嘶哑。重者,可发生喉头水肿、喉痉挛而引起窒息,也可出现呼吸困难、肺水肿、昏迷和休克。

2.浮游粒子的污染

浮游粒子中危及人类健康的主要是粒径小的所谓飘尘。浮游粒子的发生源主要有:(1)人体头皮、皮肤屑、衣物上的污垢和人体活动如室内步行、扫除等;(2)燃料燃烧煤烟;(3)建筑材料和设备石棉纤维、玻璃纤维、螨虫等;(4)吸烟烟雾烟尘、焦油等;(5)其他空调系统产生的粉尘等。

3.香烟烟雾的污染

香烟烟雾是室内空气的主要污染源,烟雾中既有气态分子状污染物(占91.8%),又有浮游粒子状污染物(占8.2%)。这些粒子状污染物还会吸附在墙壁等地方,随着低沸点成分的挥发和气态污染物一起构成室内的臭气源。香烟烟雾中的污染物有一氧化碳、氧化硫、尼古丁、各种苯并比、醛类、酚类、亚硝酸胺、氟和镍的化合物、放射性元素等2000多种,其中已证明有致癌性的物质至少有40多种。

4.放射性污染物及其危害

室内放射性污染物主要是氡。氡是一种惰性气体,多用做保护气,它是自然界中唯一的天然放射性气体,室内空气中的氡来源于建筑水泥、矿渣和装饰石材。世界上每年发生的肺癌病例中,6%到15%是由氡气引起的,氡对吸烟者的危害尤重。

5.生物性污染物及其危害

生物性污染主要是细菌。细菌主要来源于地毯、毛绒玩具和被褥等。室内空气质量标准(GB/T18883―2002)规定室内菌落总数为2500cfu/m3。

二、预防室内空气污染的主要措施

1.污染源控制――消除或控制室内污染源

首先装修设计时要进行预评价,充分考虑板材的种类和用量。其次改进施工工艺。在施工工艺的选择过程中主要应考虑三点:a.注意所用材料的最优组合(包括板材、涂料、油漆等),既要使材料的质量符合国标要求,又要最经济最实惠;b.提倡接近自然的装修方式,尽量少用各种化学及人工材料,尽量不要过度装修;在施工过程中,通过工艺手段对建筑材料进行处理,以减少污染。

2.通风控制――提高新风的稀释效应

首先,开窗通风换气,通风换气是改善室内空气质量最简单、经济、有效的措施,当室内平均风速满足通风率的要求时,可减少甲醛的蓄积。其次,合理使用空调。所谓空调器的附加功能,如负离子发生器、高效过滤等功能,对改善室内空气品质有一定的作用,但所起的作用有限,不能完全依赖。

3.净化处理――用物理、化学、植物法降低室内污染

(1)物理法:用活性炭的吸附性,吸附室内有毒、有害气体。

(2)化学法:利用化学反应,使用化学试剂进行化学吸收室内有毒、有害气体。

大气污染主要因子篇8

中图分类号:U664 文献标识码:A 文章编号:1006-8937(2015)26-0173-02

煤矿液压设备由于在相对较差的环境下工作,对于液压油的各种指标要求相应的也就很高,从而满足液压设备实际工作需要达到的可靠性、工作效能和精度等,而液压油的污染恰恰是破坏指标性能的主要因素,导致液压系统故障频发。因此,有效控制液压油(传动液既工作介质)的污染、保持其清洁度,是保证煤矿液压设备可靠、安全工作的重中之重,应予以重视。

1 煤矿设备液压油产生污染的原因

1.1 物理状态

将液压油的污染来源进行物理分类,通常包括液态污染、气态污染以及固态污染,其中,液态污染主要通过液态污染物,流入液压油里,而且根据其可溶性以及自身重量,分为液体乳状液或者游离水态溶解,气态污染物主要通过气态污染物或者气泡的形式,溶解到液压油里,固态污染固主要通过微粒状态以及固体污染物(机械杂质),混杂在液压油里。

1.2 污染来源

根据污染物的来源可以将液压油的污染原因分为:零部件污染、人为污染、微生物污染、外界吸入污染、过滤器元件聚集污染以及磨损污染。①零部件污染主要由于在制作过程中零部件中保留或产生的多余物及工艺残渣;②人为污染是指在试验、维修、装配过程中因为工作人员的粗心大意以及不规范操作而导致的污染;③微生物污染是指在液压油中仍然存在着存活或死亡的微生物有机体;④外界环境的污染是指烟雾、水分、碎末、蒸汽、灰尘等进入液压油中。

1.3 存在原因

根据污染物的存在原因,可以分为环境污染、新产生污染、固有污染。①环境污染是指烟雾、水分、蒸汽等侵入液压系统;②新产生污染是指液压在运行、维修、试验、装配的过程中产生污染物;③固有污染是指纤维末、漆皮、绣片、磨料、切屑、焊渣、砂等在一开始便侵入液压系统中。

1.4 污染性质

液压油的污染性质可以分为能量污染以及物质污染,①能量污染主要是指热能(介质分子以及添加剂受热分解)、磨损(产生机械杂质)、过期、辐射等对液压油的污染;②物质污染主要是微生物、化学制品、液态、气体、粒子等对液压油的污染。

2 煤矿设备液压油的污染控制

2.1 确保性能稳定的有效措施

①利用检测污染的仪器和方法,比如电子屏幕显微法、显微镜粒子计算法、铁谱分析仪、自动颗粒计算器、筛选法、称重法等,通过利用这些仪器和方法,对液压系统的污染程度进行全方位的分析检测,并为之后的污染控制工作提供理论依据。②提高液压元件以及油料的清理工作效率。③通过利用性能良好的过滤器,从而保证液压系统在工作过程中具备一定的清洁程度。④对受到污染物影响的液压元件进行系统研究,并结合耐污染度理论切实完成液压元件污染寿命的试验过程。⑤完善污染控制指标。

2.2 控制污染工作的主要内容

①在进行液压元件装配的过程中,要对零件认真清洗,完成装配工作必须采取有效的措施,避免液压元件在运输或储存过程中受到污染。②认证清洗液压系统的接头、管子、油箱,通常完成管路试装之后,对其拆除清洗,将毛刺去除,在此过程中,管子要进行防锈和酸洗中和处理。③滤油器的安装位置及型号要合理有效,油箱中的油液必须按照有关规定进行过滤。④油箱必须密封,从而避免污垢由油箱进入液压系统中。⑤如果因操作不慎或者系统因素而致使油液流出,不得将其收集送回油箱,不得将油箱视为垃圾箱,只有确保油箱的清洁卫生,才能够确保液压系统的顺利运行。⑥在维修过程中,必须严格遵守清洁规范,避免乱拆乱放,在液压系统的拆修的过程中,如果不注意清洁工作,将无异于破坏液压系统。⑦一旦发现液压系统中油液受到污染,必须及时找出污染原因,并且采取有效的措施进行整治,导致污染的原因可能是污垢的侵入或者内部污染源异常,必须重视。⑧仅仅依靠液压系统的滤油器难以满足实际净化污染时,必须利用过滤机将油液过滤,从而排除污染。⑨定期将液压油倒出,或者采样静置肉眼观察或仪器分析,定期进行更换。

3 煤矿设备液压油的合理使用

3.1 液压油质量的影响因素

①水因素。根据标准,油的水分必须达标,不得高于规定范围,如果油中的水分不符合规范标准,则必须对其进行置换,不然将会破坏轴承,锈蚀钢件表面,从而乳化液压油,降低粘度,降低,加快磨损,并生成胶质沉淀,阻碍导热性能,极大地降低了滤油器的使用面积,pH值的变化会加速腐蚀(水分以及杂质超标相当于人得了血液病)。②氧化因素。一般而言,液压油(工作介质)的工作温度应控制在30~65 ℃之间,不得高于70 ℃,否则将会极大地降低油的寿命,液压油的碳氢化合物受热分解与氧化变质,在系统沉积,从而堵塞了元件中控制油路,性能降低,导致液压泵、阀芯液压马达、活塞、阀类等磨损加重,不利于液压系统的正常运行。③杂质因素。杂质会对液压系统的各个元件造成影响,一旦阀芯或者其他部位中卡了杂质,必定会对液压系统造成影响,卡阻、磨损,从而导致故障的发生。④空气因素。如果液压油中存在气泡,将会对元件和管壁造成气蚀,阻碍液压系统的正常运行,如果不能有效的处理,严重时会气蚀破坏系统元器件。⑤理化反应因素。液压油箱内的油漆如果没有清除干净,将会影响油品的化学质量。

3.2 液压油的使用与保养

①在设备开机之前,检查系统密封、油位。②设备运转后,要检查液压油中是否存在气泡产生(是产生气蚀的主要因素),一听系统声音,二看油品质量,必须对其进行处理,气泡消失后,才能启动设备运行。③时刻关注液压油的温度,在设备运转一段时间之后,一旦液压油的温度偏高,则需要对其进行冷却处理或者停机休息,有时由于泄漏或磨碎加大都可能导致油温快速升高,等查明原因,待液压油温度处于正常状态后方可重新运转设备,从而延长设备与液压油的使用。④如果液压系统中存在油路不畅、有水或者进气的问题,均为发出抖动和声响,而且压力表的读数也会发生异常,必须对其进行停机处理,并检查问题所在,予以处理。⑤定期过滤液压油,检查、更换滤芯,将液压油中杂质颗粒控制在合理范围内。⑥定期更换液压油,更换过程中必须遵守说明书及规范,与此同时,滤油器也需要定期更换。

4 结 语

煤矿设备用液压油时,必须严格控制污染,注重油品管理,并规范使用,从多方面保证并延长液压油品的性能,提高使用效率,避免一系列的因油品(工作介质)质量问题引发的液压系统故障,从而确保煤矿的安全生产。

大气污染主要因子篇9

近年来,随着经济的迅速发展以及机动车保有量的持续增长,机动车排放所造成的污染也日益成为人们所关注的焦点[3~9]。自九十年代以来本市加强了在用车尾气排放检测、普及使用无铅汽油、提前执行轻型车新车排放标准等一系列机动车污染控制措施,较为有效地控制了中心城区的环境空气质量继续恶化的势头,但郊区环境空气质量受机动车污染排放影响日益突出。2000年全市NOx年均浓度0.056毫克/立方米,比1995年上升了10%;城区和郊县NOx年均浓度为0.090毫克/立方米和0.032毫克/立方米,分别比1995年上升了23%和39%,见表1[10]。

表1.1995~2000年上海市NOx年日平均浓度变化

年份全市城区郊县

浓度

(微克/立方米)相对浓度

(%)浓度

(微克/立方米)相对浓度

(%)浓度

(微克/立方米)相对浓度

(%)

1995511007310023100

19975911610514428122

2000561109012332139

根据国外机动车发展经验可知,当人均国内生产总值达到3000美元以上时,轿车将成为机动车保有量增长的主要方向。作为国际大都市的上海,汽车工业的发展不仅预示和带动本市经济的腾飞,同时,人民生活水平的提高也急切期待现代化便捷交通方式的到来和家庭汽车的普及,机动车在今后相当长时间内将保持快速增长的速度。根据市交通所预测,到2020年本市机动车保有量将达到200~350万辆,是2000年的3~5倍,可以预见如果不采取措施加以控制,本市大气环境势必进一步恶化。

目前,国内外对于机动车污染控制的研究,主要集中于两个方面,一是机动车排放因子的研究;二是机动车污染治理和控制对策的探讨。排放因子是反映机动车排放状况的最基本的参数,也是确定机动车污染物排放总量及其环境影响的重要依据。目前用来计算机动车排放因子的模式主要有美国加州空气资源局的EMFAC模式,欧洲共同体的COPERT模式,美国EPA的MOBILE系列模式。其中,MOBILE汽车源排放因子系列模型是美国环保局开发的计算车队排放水平的程序[11]。在该模型中,综合考虑了汽车的使用年限、行驶里程、新车排放因子、劣化系数、行驶速度、气温、I/M(检查/维护)制度以及车用油料特性等因素对排放的影响[12]。国内外对于该模式已有广泛的应用。墨西哥采用美国EPA的Mobile5a基本结构模式,用来计算5个特定区域中8种车型的排放因子。根据气温、平均车速、汽车操作模式,燃料挥发和里程自然增长率条件估计1960年到2020年的排放因子[13]。此模型在加拿大的多伦多地区[14]、泰国曼谷等也有所应用。MOBILE模式在国内的小范围内也得到了一定的应用。北京清华大学郝吉明、傅立新等于1997年曾结合北京市实际情况对MOBILE5进行修正,并将之应用于北京市机动车尾气排放的研究中;祝昌健等应用MOBILE5模式对广州市机动车尾气排放系数及污染趋势进行了探讨[15];李修刚等将MOBILE5模式用于南京市,将给出的南京市现状排放因子直接应用于南京市及附近城市的环境影响评价[16]。

将MOBILE5模式结合上海实际情况进行本土化已经有人做过尝试,但是由于基础数据严重不足,因此对于此模式的修正尚不能进行检验。主要的方法仍是采用美国FTP的测试数据,将上海市机动车目前的排放水平类比于美国70年代,计算得到不同车型的排放因子。

在污染物的扩散方面,目前一般沿用有限源高斯扩散模型,即根据线源的长度、高度、强度、距离、风速、风向和相应扩散参数计算空间任一点的污染物浓度[17]。但目前这方面的研究较少考虑城市空间的特殊性,即对城市各类人为设施,包括绿化、建筑等对扩散的影响考虑较少。

对于线源排放污染物的扩散研究,国外主要的模式有CALINE、BLP(BouyantLineandPointSourceModel)、CDM2(ClimatologicalDispersionModel)、ISC3(IndustrialSourceComplexModel)、RAM(Gaussian-PlumeMultipleSourceAirQualityAlgorithm)。以上模型均由美国环保局(USEPA)开发。其中,CALINE为稳态高斯扩散模型,用于确定高速公路下风向的空气污染浓度,要求地形相对不太复杂。BLP为高斯烟流扩散模型,用于处理炼铝工厂以及其它的工业污染源的单一建模问题,要求其烟流上升和下降是主要由固定线源所影响的。CDM2为气候稳态高斯烟流模型,用于确定城市区域平地下风向的长期(每季或每年)的污染物的算术平均浓度。ISC3是一个稳态高斯烟流模型,可用于评价来自与工业带相关的许多污染源的污染物的浓度。这个模型涉及到了下列因素:粒子的下沉和干沉降、风向、点面线及立体污染源、烟流的上升为距离的函数、点源的分离以及有限的地形调整功能。ISC3可以有长期和短期两种模式可供选取。RAM是高斯烟流多源空气质量算法,是一个稳态高斯烟流模型,用于估算相对稳定的污染物浓度,平均从一小时到一天、从点源到面源、在乡村或者城市的沉降,其地形条件可以假设。

我国目前汽车污染仅相当于国外70年代中期水平,现有汽车90%以上是国产车,由于排放控制技术落后,在同样运行工况下,国产车较发达国家同类产品排放量高几倍甚至几十倍,加上交通管理手段落后,在用车检查维修制度不完善,城市交通道路拥挤和市内居民集中,大量车况恶劣的车辆继续行驶,更加剧了污染物的排放。国产车平均日排污量为0.6—0.9kg[18]。本论文旨在借助GIS环境,根据城市路网、交通流量、车型比例等信息,采用经过修正的MOBILE模型,计算不同车型机动车的排放因子,从而确定每条路段不同污染物的排放量。由于机动车流量和排放因子是计算道路机动车污染物排放源强的关键参数[19~21],本论文将通过抽样调查和MOBILE模型修正得到了这两个量。在确定道路线源排放源强的基础上,利用CALINE3有限长线源扩散模式,建立上海市城区多线源污染扩散模式,以此来分析道路污染物扩散状况,并在GIS图形上进行显示,最终完成上海市交通线源污染管理信息系统。此系统可为政府有关部门制定道路交通污染管理制度、合理制定城市规划和建设管理决策提供理论依据。

参考文献

[1]上海市大气污染防治对策研究P1

[2]上海市环境科学院《世界银行——上海城市交通项目:减少上海城市车辆排污危害的战略》1997.9

[3]陈长虹等,上海市机动车排污状况与污染控制战略,1997,16(1):28

[4]赫崇衡等,汽车排气污染及治理现状和动向,上海环境科学,1996,15(8):11~13

[5]彭宝成等,汽车尾气对动物的生物效应研究,上海环境科学,1995,14(2):14~17

[6]王培洁,上海市汽车排气污染管理的现状与对策,上海环境科学,1994,13(7):7~8

[7]陈长虹等,城郊道路污染个例分析,上海环境科学,1993,12(9):13~17

[8]陈长虹等,城郊道路交通带状多线源污染扩散模式研究,上海环境科学,1993,12(11):7~10

[9]王素云等,上海市汽车排气污染在大气中的分担率,上海环境科学,1990,9(11):27~29

[10]上海市机车污染综合防治领导小组办公室,《上海市机动车污染综合防治规划及规划纲要》,2000,3

[11]傅立新等,MOBILE汽车源排放因子计算模式研究,环境科学学报,199717(4):474

[12]傅立新等,北京市机动车污染物排放特征,环境科学,200021(3):68

[13]WesternGovernor’sAssociationDenver,ColoradoandBinationalAdvisoryCommittee.Mobiel5-MexicoDocumentationandUser’sGuide.Nov.20,2000

[14]R.MclarenandD.L.Singleton.AnalysisofMotorVehicleSourcesandTheirContributiontoAmbientHydrocarbonDistributionsatUrbanSitesinTORONTODuringtheSouthernOntarioOxidantsStudy.AtmosphereEnvironment,30(12),1996

[15]祝昌健,广州市机动车尾气排放系数及污染趋势探讨,中国环境科学,199717(3):216

[16]李修刚等,用于城市交通规划的机动车污染物现状排放因子研究,交通运输工程学报,20021(4):87

[17]A.K.LuharandR.S.Patil.1989.Ageneralfinitelinesourcemodelforvehicularpollutionprediction.AtmosphericEnvironment,23:555-562

[18]贾艳杰,我国大城市汽车废气污染问题及其治理对策人文地理199712(3):48

[19]EPA,User’sGuidetoMOBILE5(MobileSourceEmissionFactoryModel),May1994

[20]EgglestonHS,GoriβenN.JourmardR,etal.CORINAIRworkinggrouponemissionfactorsforcalculatingemissionsfromroadtraffic[R].Methodologyandemissionfactors.ReportVol.1,No.EVR12260EN,Luxembourg,1989.

[21]pilationofairpollutantemissionfactors[R].USEnvironmentProtectionAgency.AP-42,NC,USA.1985.50-83

二、研究方案

1、研究目标、研究内容和拟解决的关键问题

研究目标:研究上海市机动车尾气排放造成的道路线源源强,以及机动车污染物在中心城区街道峡谷中的扩散效应,并在GIS系统上进行显示,完成自主开发的上海市交通线源污染管理信息系统。

研究内容:1)上海市主要道路机动车尾气排放源强;

2)机动车尾气在街道峡谷中的扩散效应;

3)交通污染在GIS平台上的实现。

关键问题:1)机动车大气污染排放源强计算模型;

2)上海市道路机动车尾气在峡谷中的扩散模拟;

3)地理信息系统与交通大气污染模型整体集成的方法和途径。

2、拟采取的研究方法、技术路线、实验方案及可行性分析

研究方法:基础数据调研、模型修正、机动车污染物排放和影响预测可视化界面设计、系统整合。

技术路线:如图1所示。

实验方案与可行性分析:

1)建立机动车排放源强计算模型、污染物扩散模型,以及基于GIS技术应用模型,其工作量较大,其中基础数据(包括车流量、车速)的调研尤其困难。但是通过参与上海市环境保护局2002年科技攻关项目——《上海市机动车发展和大气环境保护研究》,并搜集大量的国内外相关文献,可获得系统开发所需要的相关数据,因此本研究已经有较好基础。

2)参与《影响上海大气能见度的主要因素与控制管理对策研究》课题的研究工作,对于本市机动车污染现状和历史沿革已有所了解。

3)参与了“上海市数字城市大气环境模块”的工作,初步掌握了GIS系统开发和实现方法。

据此我认为,按期完成论文是可行的。

图1.研究技术路线

3、本论文的特色与创新之处

建立适合上海市情景的主要道路机动车尾气中污染物源强排放模式。建立线源扩散模式,使其适用于大城市中街道峡谷中机动车尾气污染物的扩散状况。给出上海市上空污染物扩散状况。

目前国内将交通污染模拟与地理信息系统结合的研究还不多见,因此本论文在该方面的研究将是一个新的尝试。

4、预期的论文进展和成果

预期进展:

2003.07——2003.09收集中外文文献

2003.09——2003.10基础数据的收集和处理

2003.10——2003.12模型的修正

2004.01——2003.03GIS系统的编程实现

2004.03——2004.05论文的撰写与修改

预期成果:

•研究上海市机动车尾气排放状况,建立源强计算模型;

•综合城市气象条件、交通污染物排放强度、建立污染物扩散模式,确定机动车污染物影响的时间变化、空间分布,;

•完成交通污染管理信息系统;

•除完成毕业论文之外,在国内外有关刊物上2篇。

三、论文大纲

摘要

前言

第一章大城市机动车尾气污染排放数值模拟的研究背景及意义

一、研究背景

二、国内外研究现状

第二章机动车排放因子计算模型

一、MOBILE6模型介绍

二、利用修正的MOBILE6计算机动车排放因子

第二章道路机动车尾气污染物排放源强

一、线源源强计算模式

二、上海市道路机动车尾气污染排放源强的计算

第三章城市上空污染物扩散模式

第四章街道峡谷污染物扩散模式

一、CALINE4模型介绍

二、模式修正

三、上海市街道峡谷污染物扩散模式的建立及应用

第五章上海市交通污染管理信息系统的建立

一、排放清单数据库的建立

二、系统的开发

第六章结论

参考文献

四、研究基础

1、已参加过的有关研究工作和已取得的研究工作成绩

(1)参加《中国气象百科全书》建筑气象、城市气象等内容的编写。

(2)参与上海市普陀区建设项目环境影响评价工作。

(3)参加“扬尘污染来源与控制管理研究”课题的研究工作。

(4)承担了“崇明岛综合开发项目”的大气监测和采样工作。

(5)参与“影响上海大气能见度的主要因素与控制管理对策研究”课题的研究工作。

(6)参与“机动车发展与大气环境保护研究”项目。

(7)参与“上海市能见度影响因子研究”研究生科研基金项目。

(8)参与上海市数字城市课题交通环境模块的模拟研究。

2、已具备的实验条件,尚缺少的实验条件和拟解决的途径

拥有以下主要设备:

大气污染主要因子篇10

环境污染是人类生存的严峻问题,受到当今世界各国普遍关注和重视,随着经济发展和社会的进步,燃烧矿石、发电、合在成千上万的化学物质等工业活动以及汽车尾气的排放,使城市大气中一些有毒气体的浓度成倍甚至几百倍地增高,大气污染已经成为城市的一个主要环境问题,研究表明:大气污染浓度的增加,不仅会引发人的呼吸道疾病,心脏病、甚至还会导致死亡,园林植物可以改善人类生活质量,保护城市生态环境,在城市大气污染的生态平衡中起着“除污吐新”的作用,利用生物监测和评价大气污染状况,一直是生物监测的主要内容之一。

一、园林植物对大气污染的监测作用:

(一)植物监测的概念:

工业革命以来,环境污染日益严重,及时有效地进行环境污染的监测,既能了解情况,又能采取有效措施控制污染,通常的监测方法有仪器监测和生物监测。在生物监测中,植物监测应用最为广泛,植物监测是指利用对环境中的有害气体特别敏感的植物的受害症状来监测有害气体的浓度和种类,并指示环境被污染的程度。该类植物称为监测植物或指示植物。如,地衣苔藓对环境因子的变化十分敏感,常用来监测大气污染。

(二)园林植物监测城市大气污染的特点:

不同植物对城市大气污染的反应不同,可用来监测城市大气污染。园林植物监测城市大气污染具有以下几个特点:(1)能够早期发现大气污染。(2)能够反映几种污染物的综合作用强度。环境污染物成分复杂,各种分子和各种离子之间既有协同作用,又有拮抗作用,以及相加作用等。如二氧化硫与乙醛共存时,对植物的危害增强,表现出协同作用;而有些污染物共存时,则表现出相互减弱作用,即拮抗作用,如二氧化硫与氨气。同时,污染物毒性还受到环境因子,如PH值、酸碱性、水温等的影响,这是理化监测所不能反映的,而园林植物接受的是综合影响,不光是个别离子的综合作用,因而园林植物监测反映了整个环境中各种因素综合作用的结果。(3)能够初步监测污染物的种类和估测污染物的浓度。(4)能够反映革一地区的污染历史和污染造成的累积受害。由于树木寿命长,而许多污染物会沉积在树木的年轮中,通过对年轮中有害物浓度进行分析可推测环境污染的历史状况。所以,用多年生的树木作监测植物,能够反映某一地区的污染另史和污染造成的累积受害等。(5)具有长期、连续监测的特点。在植物的生长周期内,可以连续不断地监测环境污染状况,而且,植物监测还可监测污染物在环境中的迁移、蓄积、转化等动态变化过程,为污染后的治理等提供理论依据。(6)具有经济、简便的特点,用植物监测环境污染经济、简便、在生产实际中具有很大的应用价值,适合大面积推广。

二、园林植物对城市大气污染的反应及监测植物:

大气中的污染物主要通过气孔进入叶片并溶解在汁液中,通过一系列的生物化学反应对植物产生毒性,所以园林植物对城市大气污染的反应也首先表现在叶片上,大气污染在空气中达到一定的含量且持续一段时间后,不同植物就表现出不同程度的伤害特性,目前我们主要采用观察植物外观有无伤害症状(通常观察植物叶片)来判断植物的受害程度,有些植物对污染物很敏感,其叶片在不同种类的较低浓度污染物作用下短时间内就表现出不同特点的伤害症状,植物在不同的大气污染作用下对植物叶片的可见伤害因伤斑的部位、形状、颜色和受害叶龄等特征的不同而互相区别。一些常见有害气体的对大气污染反应及监测植物如下:

(一)SO2 SO2的浓度达到1ppm至5ppm时人才能感到其气味,浓度达到10ppm至20ppm时,人就会有受害症状:咳嗽、流泪。敏感植物在其浓度为0.3ppm时经几小时就可在叶脉间出现点状或块状的黄褐斑或黄白色斑,而叶脉仍为绿色。对SO2敏感的植物有:地衣、紫花苜蓿、凤仙花、翠菊、四季海棠、天竺葵、锦葵、含羞草、落叶松、向日葵、梨、雪松、苹果、复叶槭等。

(二)FH F是黄绿色气体,有烈臭,在空气中迅速变为HF;后者易溶于水成氢氟酸。慢性氟中毒症状为骨质增生、骨硬化,肾、肝、心血管、造血系统、生殖系统也受影响。F及HF的浓液在0.002ppm至0.004ppm时对敏感植物即可产生影响。叶片伤斑最初表现在叶端和叶缘,然后向中心部扩展,浓度高时整片叶子枯焦脱落。对FH反应敏感的植物有:唐菖蒲、玉簪、郁金香、万年青、萱草、榆叶梅、葡萄、杜鹃、樱桃、月季、雪松、菖兰、杏、紫薇、复叶槭等。

(三)Cl2 Cl2是黄绿色气体,有臭味,比空气重。HCl为可溶于水的强酸。Cl2有全身吸收性中毒作用,人从呼吸道吸入5ppm至10ppmCl2,即可溶解于粘膜,从水中夺取H变成HCl。氯中毒可引起粘膜性肿胀、呼吸困难、肺水肿、恶心、呕吐、腹泻等。Cl2及HCl可使植物叶片产生褐色点斑或块斑,但斑界不明显,严重时全叶褪色而脱落。对Cl2反应敏感的植物有:圆柏、垂柳、加拿大杨、油松、紫薇、栾树、波丝菊、金盏菊、凤仙花、天竺葵、蛇目菊、硫华菊、一串红、落叶松、油松等。

(四)NO2 它所引起的主要症状为黄化现象。主要发生在叶脉间或叶缘处,成条状或斑状不一,幼叶在黄化现象产生之前就可能先脱落。但与其他原因所产生的黄化现象较难区分开。对NO2反应敏感的植物有:榆叶梅、连翘、复叶槭等。

大气污染主要因子篇11

中图分类号:X831 文献标志码:A 文章编号:2095-2945(2017)20-0079-02

引言

空气污染是空气质量中的常见现象,空气污染从古代就有,只是以前空气污染的程度小,人们的生活水平低,自然不会引起人们的重视,现代社会中空气污染已经成为各大城市的“通病”,我国正处在城市化发展的关键时期,不能放任空气污染,走国外城市“先发展,再治理”的老路,因此必提高治理空气污染的意识,完善城市空气污染监测方法,采用合理的解决措施,改善城市居民的生活环境,笔者就这些方面在下出具体的探析。

1 我国城市空气质量的现状和特点

1.1 我国空气质量的现状

根据近期城市环境空气污染监测报告现实,现阶段城市空气污染总体变化不大,局部地区还有改善的趋势,但是城市空气污染仍具有一定规模,国家政府对城市空气污染做出了改善措施,取得了一定的效果,但是近几年城市汽车尾气排放、工业废气等因素,使得城市空气质量恶化,因此我国城市空气质量标准中做出了明确地规定,空气中的二氧化硫、悬浮颗粒物、可吸入颗粒物、铅、氟化物等十种污物的浓度不能超过规定限制。从全国范围来看,城市空气污染物最主要的还是可吸入颗粒物和悬浮颗粒物,部分城市二氧化硫浓度较高,酸雨范围和规模总体保持稳定,大约为国土面积的百分之三十五左右。

1.2 我国城市空气污染的主要特点

随着我国改革开放不断深入,我国经济正在经历飞速发展的时期,城市化占有率逐年增加,但是部分人没有长远的发展眼光,为了追求眼前的利益,以牺牲环境为代价发展经济,造成了城市空气污染,从经济发展规模来看,我国也是一个发展中国家,缺乏城市空气质量的意识,在空气治理过程中技术水平也整体落后于发达国家,总体形势不容乐观,具体来说主要包括以下几个方面:(1)城市绿化面积少。城市人口众多,各种建设用地都很紧张,在有限的土地资源下,城市绿化就是在“夹缝中求生存”,人均绿化面积很少,绿化植物的作用就是进行化光合作用,吸收空气中的有毒气体,但是有限的城市绿化不能满足城市空气污染的净化,所以城市中单位空气面积的污染物占空气的浓度极大,对人体健康造成很大的伤害。(2)城市规划不合理,缺乏整体意识。在我国城市化过程中管理者缺乏整体意识,大城市的发展就是“摊饼”式的对外扩张,新兴城市没有整体合理的布局,粗放式管理模式造成了资源的浪费,空气中的污染物浓度普遍超标,成为城市经济进一步发展的瓶颈。另外根据最终的环境监测报告显示,部分地区空气恶化的趋势有所改善,可吸入颗粒物、悬浮颗粒物、二氧化硫、氟化物的浓度降低,达到国家空气质量标准的二级标准的城市,占调查总数的百分之六十五左右,达到国家空气质量标准的三级标准的城市数量,占调查总数的百分之三十五左右,该数据是根据全国三百五十个城市的空气质量报告总结出的,具有权威性。

2 城市空气质量监测方法

现阶段城市空气质量监测主要包括简单评价和综合评价,其中简单评价分为单因素和单指标,综合评价主要因素是多因素和多指标,在对城市空气质量监测过程中,可以采用新式监测方法或者完善已有的监测方法,主要目的还是真实可靠地监测空气质量。

2.1 指数法

指数法主要内容是在城市空气质量监测时,根据在现实生活中采集的空气质量数据和空气质量标准值进行比较,通过对比法得出空气质量是否符合标准的方法,指数法主要包括单因子指数法和综合指数法。(1)单因子指数法。顾名思义,单因子指数法就是采用对照比较法和概率统计法进行比较,对单个污染物在空气中的浓度进行分析,该方法的优势简单明了,可以快速了解污染物对空气的污染程度,但是缺点就是不能整体分析污染物之间的相关性。(2)综合指数法。综合指数法以采集的空气质量数据为基础,通过公式运算得出的空气污染程度的指数,该方法还可以细分为环境空气污染指数法和综合污染指数法,分别表现为两个方面:环境空气污染指数仅仅依据的是采集数据的最大值,不注重其他方面的作用,通常情况下作用于空气质量日报的数据指标评价中;综合污染指数法的优势可以准确表现出各个污染物之间的比例,可以体现出空气污染的主要来源和次要来源,该方法目前主要应用于空气质量报告中的各污染物在总体里的比例变化情况。

2.2 复杂数学模型评价法

(1)模糊综合评价法。模糊综合评价法主要考虑的是各部分的关联性,在评价过程中做到了定向、定量的针对性,模糊综合评价的结果不仅可以反应时间、空间等因子的相关性,可以清晰明了地观察不同因子的关系,但是该评价法也有一定的劣势,在采用线性加权模型的情况下,污染因子权重较少,然而污染因素较多的时候,评估结果会失去真实性,部分真正的有用信息不会得到重视,对城市空气质量的监测造成误差。(2)灰色系统法。灰色系统法主要作用是利用推理知识进行的空气质量的推演,主要内容是通过已知的部分信息、数据,运用灰色系统法的推演知识,对系统中的行为和规律详尽的描绘出来,但是灰色系统法推论出的现象不是绝对的,有时会因为一些不可抗拒的因素造成判断出的现象与真实情况有一些误差,这并不妨碍灰色系统法成为目前较好的城市空气监测方法之一,该方法的实践操作方法分为灰色聚类法和灰色关联法,完成对城市空气质量状况监测的任务。(3)物元分析法。物元分析法相当于一个运算模型,在进行城市空气质量状况监测过程中将物元分析法中的评价标准、指标、特征作为物元,统一进行分析管理,运算出的节域、权重建立健全评估模型,就可以得出想要的结论,物元分析法关联度的最大值对应级别应该为评价级别。

2.3 城市空气质量状况监测方法的注意问题

城市经济不断发展的过程中,城市建设规模、城市功能区布局、产业结构分布都在不断发展的情况下,在对城市空气质量监测点进行调整,达到最优的局面,因此要注意以下几个问题。(1)选择空气质量监测点位时,要注意城市的可持续发展,统筹安排各方面的均衡发展,又要注重监测点周边环境的稳定性,保障空气质量监测数据的真实可靠,才能评估正确的结果。(2)对于污染区域的监测点安排,要摒弃错误思想,主要包括城区边界地带污染较小的意识,保证监测点符合空气质量监测中的合理,准确。(3)要根据城市人口和工业分布合理安置空气质量监测点,具体操作如下:在人口密集的地区适当的增加监测点,可以更好的得出人们生活活动对空气的污染程度。在工业密集分布的地区,在工业区周边和中心地带增设空气质量监测点,以便更好地做出工业活动对空气污染的评估报告。

3 城市空气污染的防治措施

3.1 加强城市空气质量的监测,从源头开始控制污染源

运用各种空气污染监测方法,全天候监测城市空气的质量,保证对整个城市的空气掌控,一旦某些区域发生空气污染的现象,城市空气监测部门一定要做到及时曝光,让社会的舆论道德压力和政府有关部门的干预将空气污染源扼杀在萌芽中,并且还可以唤醒城市居民的环境保护意识,用整个社会的力量去保护空气质量安全。

3.2 加强防治汽车尾气排放对空气的污染

人们的生活水平越来越高,城市汽车保有量基本饱和,大量的汽车不仅使城市交通变得拥挤,汽车尾气还造成了空气污染,因此政府相关部门严格按照机动车环保制度,采用限制行车区域、时间等方式,减少汽车尾气对空气的污染。还可以大力扶持公共交通、新能源汽车以及共享自行车等一系列手段,根本目的就是减少汽车尾气对城市空气的污染。

3.3 加强防治工业对空气的污染

政府要制定有关工业排放废气的准则,使工业废气的排放能被自然环境净化,对于重度污染工业可以搬迁到远离城市的区域,对于城区工业的废气排放,一定要严格监测,发现企业违规排放要严肃处理,不能给企业留下侥幸心理,并且还要鼓励企业发展新型废气处理设备,尽量杜绝工业对城市空气污染的现象。

3.4 加强城市绿化规划

绿色植物是天然的空气调节器,是净化城市空气的最主要手段,因此城市规划时要有长远的发展眼光,预留出足够的绿化地区,并且合理规划绿化地区的分布,实现绿化的功能最大化。

4 结束语

城市空气污染问题日益成为制约城市进一步发展的难题,因此监测城市空气质量不仅解决了城市居民关注的民生问题,而且可以使城市走上可持续发展的道路,全社会应该有长远的发展眼光,也要给子孙后代留下一片干净的蓝天,本文就城市空气质量监测方法和防治措施进行了具体探析,具有一定的参考价值。

参考文献:

[1]庄素敏.基于城市环境空气质量自动化监y的研究[J].科技与创新,2016(12):110-111.

[2]洪千淇,刘萌萌,王尧.浅谈室内空气污染的危害及其防治措施[J].科技创新与应用,2016(12):162.

大气污染主要因子篇12

随着现代工业的发展,工业及交通运输设备污染物大量排放,大气环境污染严重,使得人类社会的进步以环境为代价的惨痛教训不断重演。

近年来,每到秋冬季特别是 2012 年入冬以后,中国中东部地区不时出现雾霾天气,大气环境质量重度污染和严重污染,造成人群呼吸系统疾病频发、视程障碍,甚至引发交通事故。 同时由于人们环境意识的不断增强,防治雾霾污染已显得相当重要。

1 雾霾产生的机理。

1。1 雾与霾的区别。

雾(Fog)是近地面层空气中水汽凝结(或凝华)的产物,是由大量悬浮在近地面空气中的微小水滴或冰晶组成的气溶胶系统[1]。 雾的气象学定义为:大量微小水滴浮游空中,常呈乳白色,使水平能见度小于 1畅0km[2]。 霾(Haze),指空气中的灰尘、硫酸、硝酸、有机碳氢化合物等粒子使大气混浊,视野模糊并导致能见度恶化,如果水平能见度小于10km时,将这种非水成物组成的气溶胶系统造 成 的 视 程 障 碍 称 为 霾 或 灰 霾 (Dust -haze)[3 -4],香港天文台称烟霞。

雾霾天气是一种新的天气现象,是雾和霾的混合物[5]。 早上或夜间相对湿度较大时,形成的是雾;白天气温上升、湿度下降时,逐渐转化成霾。 雾与霾均导致能见度恶化,其区别在于霾发生时相对湿度不大,而雾发生时相对湿度接近饱和或饱和。

霾发生是相对湿度小于 60%,且能见度小于 10km时的大气浑浊导致视野模糊造成的。 雾发生是相对湿度大于 90% 、能见度小于 1畅0km时大气浑浊导致视野模糊造成的[6 -7]。 因此,霾和轻雾的混合物共同造成大气浑浊、视野模糊、能见度恶化,大多是在相对湿度为 60% ~90%时的条件下发生的,但其主要成分是霾。 霾与晴空区之间没有明显的边界,这点与雾存在差异,霾粒子的直径比较小且分布较为均匀,其粒子是肉眼看不到的空中飘浮颗粒物,直径为0畅001 ~10畅000 μm,平均为1 ~2 μm。

[5]1。2 雾霾产生的条件及原因。

一般我们所见到的低能见度雾霾情况都是雾和霾的混合物。

其中雾产生的条件是:一、低空湿度大,空气接近饱和;二、大气层结很稳定(大气稳定度为F),风速小,风力只有一二级,空气不产生对流,低空水汽漂浮在这一地区,不向周围扩散;三、存在冷却条件。

每年秋冬季节,在中国的华北平原、长江中下游平原、四川盆地等地区风力较小;大气层结稳定,通常都有逆温层出现;部分地区受降水和地面水汽蒸发的影响,使得近地面空气的相对湿度增大;在上述地区,夜间天空晴朗少云,辐射降温幅度比较明显,湿空气饱和凝结,形成大雾。 在外因作用下,可加速雾的形成,如尘埃、烟雾、污染细微颗粒物容易使雾变得更浓。

霾产生的条件是:一、控制当地的气团性质稳定;二、空气中存在大量灰尘、硫酸、有机碳氢化合物等细小霾粒子,使大气混浊。 当空气中存在大量霾粒子使大气混浊,造成视野模糊并导致能见度恶化,如果水平能见度小于 10km时,就会出现霾或雾霾天气。 霾的出现表明大气已受到污染。

在实际中,雾霾的产生往往与大气逆温现象(大气层结稳定的一类现象)相伴发生,由于逆温层的出现会加重环境空气污染,从而在一定程度上导致产生雾霾天气。 这是因为逆温层是非常稳定的气层,阻碍气流向上和向下扩散,在空中形成一个扇形污染带,一旦逆温层消退,会产生短时间的熏烟污染,从而加重地面空气污染程度。

从雾霾产生的条件来看,其中雾产生的三个条件均受天气或气候影响,目前人为难以控制;而霾产生的两个条件其中当地气团性质稳定受天气或气候影响,人为难以控制,但空气中存在的大量灰尘、硫酸、有机碳氢化合物等细小霾粒子主要来自于人为大气污染物排放,重点与车辆尾气、燃煤烟气、扬尘等污染物有关。 另外,也与部分地区农村大田植物秸杆焚烧有关。 由于在稳定的天气形势下,空气中污染物在水平和垂直方向上都不容易向外扩散,使得污染物在大气的近地表层积聚,从而导致污染状况越来越严重,这是导致中国中东部地区出现大范围雾霾的重要原因。

2 雾霾防治思路。

雾霾天气产生的各基本条件中除细小霾粒子与人类生产、生活有关外,其余各条件均是人类难以控制的天气或气象条件,因此对其防控主要是通过减少大气中的霾粒子,由于大气中的霾粒子主要来自于大气污染物的排放,重点是车辆尾气、工业废气、燃煤烟气、扬尘等污染源。 因而首先必须从源头上控制,减少污染源的产生及污染物的排放,加强对这些重点污染源的治理,减少各类大气污染物的排放;其次是对已排放的污染物(如路面降尘)进行稳定化治理,防止产生二次污染,消除雾霾产生的条件。

3 雾霾防治对策措施。

3。1 国内外防治雾霾经验。

从19 世纪开始,伦敦就被称为“雾都”。 1952年的伦敦,无数个家庭与工厂成千上万个烟囱排放燃烧过程中产生的烟气,从 12 月 4 日开始,城市连续五天被浓雾笼罩,能见度只有几米,造成1畅2 万人死亡,成为 20 世纪全球最严重的环境公害事件之一。 造成污染的最直接原因是发电站和普通家庭使用的煤炭以及汽车尾气。 为了治理雾霾天气,英国首次推出严厉措施控制污染。 1954 年伦敦通过治理污染的特别法案。 1956 年枟清洁空气法案枠获得通过,该法令禁止使用多种燃料,关停大批重污染工厂,提高工业烟囱的最低限高,并将发电站搬出城市。 同时要求大规模改造城市居民的传统炉灶,减少煤炭用量,逐步实现居民生活天然气化;冬季采取集中供暖。 从英国中央政府到伦敦市政府相继出台多项法令法规,大力发展公共交通,鼓励清洁能源利用。 1968 年以后,英国又出台了一系列的空气污染防控法案,划出空气质量管理区域,并强制在规定期限内达标,这些法案针对各种废气排放进行了严格约束,并制定了明确的处罚措施,有效减少了烟尘和颗粒物。 伦敦市长鲍里斯· 约翰逊专门在 2010 年签发了有关减少可吸入颗粒物(PM10)与氮氧化物等空气污染源的行动纲领。 目前,伦敦市政府正大力采用灰尘抑制剂的化学手段清洁空气,醋酸镁和醋酸钙被投放在伦敦市内污染最严重的玛丽勒博路与上泰晤士街,实验表明,抑制剂可以减少高达14%的污染水平。

北京在承办 2008 年奥运会前对首钢等重污染企业进行了搬迁,奥运会期间采取限行措施,规定只允许50%的机动车在市内行驶,有效保证了奥运会期间的大气环境质量。 2011 年,第 26 届世界大学生运动会期间,深圳逾 43 万辆汽车停驶,同样取得了明显的效果。 限行措施虽然不能从根本上消除雾霾污染,但由于效果明显,可在秋冬季污染严重的城市作为应急措施借鉴。

3。2 雾霾防治对策措施。

(1)污染源控制与治理措施。

雾霾的防治首先要从目前人类可以控制的污染源(重点是车辆尾气、工业废气、燃煤烟气、扬尘等污染源)入手,淘汰现有高污染企业及设备,严格产业准入条件,控制新增污染源,鼓励低污染项目及替代产品,禁止大田焚烧植物秸杆,大力发展清洁能源及产品,从源头上控制污染物的产生。 其次要采用先进高效的污染治理设备,加强汽车尾气治理,对拟排放的污染物进行治理后达标排放。 最后,要对排放后的大气污染物进行吸收稳定化治理,如采用吸附方式、冲洗方式对地面等处灰尘进行清理,防止遇风或车轮携带成为二次污染源。 另外,可以通过采用灰尘抑制剂的化学手段等方式来清洁已被污染的空气。

(2)建立区域联防联控机制。

雾霾天气的产生与中国当前所处的工业化和城市化进程有关,与城市管理能力和水平有关,也与每个人的生活方式有关,其大气污染物主要来自工业废气、交通尾气、生活废气等多个行业,其产生的污染具有发生范围大、影响面积广的区域性特征。 在中国的影响范围主要是华北平原、长江中下游平原等区域,一次影响多个省区。 而且大气污染治理是一个多环节密切相关的系统性工程,只要一个环节出问题,大气污染物减排就会受影响。 因此必须建立区域联防联控机制来应对雾霾天气。

首先应建立雾霾发生区域跨省区联动法规政策,制定更为严格的污染物排放标准及政策,采用产业结构调整、能源结构调整、城市公交系统优化等综合手段,实施跨省区、多部门(工业、能源、交通、环保等)联动机制,政府与民间合力,实现多项污染物协同减排目标,达到防治雾霾目的。

其次是各级能源部门提高燃油、燃气、燃煤等各种能源产品质量,鼓励开发和采用清洁能源,限制高污染能源的供应及使用;发改委及工信委对落后产品、设备实施更严格的淘汰制度,防止高能耗、高污染企业及设备排放大量污染物;交通部门对车辆进行严格管制,淘汰尾气排放不达标车辆,雾霾天气限制车辆出行,对低出行率私车实行奖励制度;环保部门加大排污企事业单位监管,划定空气质量管理区域,并强制在规定期限内达标,对区域环境空气质量不能达标的地区,实行区域工业项目限批;企业加大环保投入力度,治理大气污染。

(3)完善和推进企业清洁生产制度。

建立健全各行业清洁生产标准及评价体系,完善清洁生产法制,扩大目前强制性清洁企业及行业范围,进行节能评估,对清洁生产、节能评估不能达标的企业严格实行关停,从源头上减少大气污染物的产生,实现由末端治理向污染预防和生产全过程的控制转变,促进企业能源消费、大气污染物减量化与资源化利用,控制和减少污染物排放,提高资源利用效率,达到控制大气中霾粒子的目的。

(4)倡导绿色生活理念。

保护环境,治理雾霾是一项长期而艰巨的任务,应该全民动员、人人参与,从我做起,树立“人人为我,我为人人”共同保护我们周围大气环境的绿色生活理念。 坚持“绿色出行、绿色消费、绿色过节”的绿色生活理念,养成节水、节电、节碳、节油、节气,不用一次性的筷子、饭盒、塑料袋, 减少粮食的浪费,随手关灯、关好水龙头等良好习惯。 尽量选择地铁或公交系统、减少私车出行;节日期间拒绝燃放等。 从身边的小事做起,珍惜资源,降低能耗,减少污染。

(5)建立霾预警制度,制定应急方案。

建立霾预警制度,把雾霾天气现象并入雾一起作为灾害性天气进行预警预报,制定应急方案。 在大雾出现前启动应急预案,通过公共媒体告知公众,减少出行,合力应急,采取私车限行、学校停课、部分电力、重污染工业企业停产等措施减少大气污染物排放。 目前上海、广州等城市已在着手制定空气重污染日应急方案。

(6)研发新技术,防治雾霾污染。

①加大科技投入,研发人类影响天气新技术,消除雾霾污染。 通过人类干扰和影响雾与霾产生的条件,造成其中某个条件缺失,从而达到消除雾霾污染影响的目的。 如中航工业航宇公司利用航天航空技术,正在研究利用无人机播撒催化剂降低空气相对湿度,消除雾霾产生条件。

②研发污染治理先进工艺技术及设备,提高工业废气、汽车尾气等污染治理水平,减少大气污染物的排放量,控制空气中霾离子的来源。

③研究大气净化新技术,通过吸附等手段来清洁已被污染的大气,降低空气中的霾离子。

4 结语。

雾霾的防控目前是一个世界性难题,从国内外现有技术研究可以看出,主要是通过完善国家有关环境保护法规及体系,减少和控制大气污染物排放,但是由于工业化和城市化的发展,这些措施目前并不能彻底解决雾霾的污染影响问题,例如具有几十年雾霾治理经验的伦敦目前仍未摆脱雾霾的困扰。

在中国雾霾的产生与中国当前所处的工业化和城市化进程有关,与城市管理能力和水平有关,也与每个人的生活方式有关,需要我们建立区域联防联控机制,倡导绿色生活理念,共同应对。

参考文献:

[1]姚丽华。气象学[M]。北京:中国林业出版社,1992。

[2]中国气象局。地面气象观测规范[M]。北京:气象出版社,2003。

[3]吴兑。霾与雾的识别和资料分析处理[J]。环境化学,2008,27(3):327 -330。

[4]吴兑。再论都市霾与雾的区别[J]。气象,2006,32(4):9215。

大气污染主要因子篇13

大气污染的主要因子为悬浮颗粒物、一氧化碳、臭氧、二氧化碳、氮氧化物、铅等。大气污染导致每年有30-70万人因烟尘污染提前死亡,2500万的儿童患慢性喉炎,400-700万的农村妇女儿童受害。

凡是能使空气质量变差的物质都是大气污染物。大气污染物已知的约有100多种。有自然因素(如森林火灾、火山爆发等)和人为因素(如工业废气、生活燃煤、汽车尾气等)两种,并且以后者为主要因素,尤其是工业生产和交通运输所造成的。主要过程由污染源排放、大气传播、人与物受害这三个环节所构成。影响大气污染范围和强度的因素有污染物的性质(物理的和化学的),污染源的性质(源强、源高、源内温度、排气速率等),气象条件(风向、风速、温度层结等),地表性质(地形起伏、粗糙度、地面覆盖物等)。防治方法很多,根本途径是改革生产工艺,综合利用,将污染物消灭在生产过程之中;另外,全面规划,合理布局,减少居民稠密区的污染;在高污染区,限制交通流量;选择合适厂址,设计恰当烟囱高度,减少地面污染 ;在最不利气象条件下,采取措施,控制污染物的排放量。中国已制订《中华人民共和国环境保护法(试行)》,并制订国家和平共地区的“废气排放标准”,以减轻大气污染,保护人民健康。按其存在状态可分为两大类。一种是气溶胶状态污染物,另一种是气体状态污染物。气溶胶状态污染物主要有粉尘、烟液滴、雾、降尘、飘尘、悬浮物等。气体状态污染物主要有以二氧化硫为主的硫氧化合物,以二氧化氮为主的氮氧化合物,以二氧化碳为主的碳氧化合物以及碳、氢结合的碳氢化合物。大气中不仅含无机污染物,而且含有机污染物。并且随着人类不断开发新的物质,大气污染物的种类和数量也在不断变化着。就连南极和北极的动物也受到了大气污染的影响!

友情链接