发布时间:2024-01-25 15:46:17
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇航空航天测控技术范例,将为您的写作提供有力的支持和灵感!
【Keywords】artificial intelligence; aerospace measurement and control technology; application inquiry; intelligent
【中图分类号】V55 【文献标志码】A 【文章编号】1673-1069(2017)05-0141-02
1 引言
人工智能在航天领域的应用具有巨大潜能。航天测控技术实际上是通过测控,实现对卫星的控制,这是一份较为复杂的工作过程。随着卫星功能的不断增多,航天测控技术要求也越来越高。虽然我国已经在航天事业方面位于先进的水平,但是航天测控设备多只是实现遥控与测控的自动化,与智能化的实现还有一段距离。因此,人工智能的应用还有待挖掘,人工智能在航天测控技术中的应用还有待研究。
2 人工智能的应用概述
近年来,我国在人工智能的研究领域也有了较大的进展,不少国内学者发表了有实用价值的研究著作。人工智能在医学诊疗方面取得了广泛的应用。随着航天器的多功能发展,智能化的转变,成为发挥航天事业多用途、系统化的决定性因素。因此,我国逐步加大了人工智能在航天测控技术中的研究,希望航天测控技术能够自动处理探测故障、自行进行飞行规划和路线设计等[1]。
3 航天测控技术中的设备应用要求
第一,卫星轨道测试及其引导系统。第二,航天侧控技术的安全控制。第三,根据航天侧控任务要求对卫星的形态进行分析,对其卫星轨道实施控制。第四,航天侧控系统要实时监测卫星内部的设备工作情况。第五,航天侧控技术要求能够对卫星上设备发生的故障,及时采取定位、排除和检修。航天的侧控应用,对设备的响应速度与可靠性都具有很高的要求,不仅要具有极强的通用性质,还要能够在规定时间内完成对相关设备的检测与通信,使设备间保持联系,保证遥测技术数据正常处理流程。对设备故障等任务提出控制指令,进而进行执行[2]。
4 人工智能在航天测控技术中的应用意义
传统的航天y控软件是通过算法结构和计算机而实现推理功能的,对于很多问题还无法提供最精确的答案和描述,数值的计算能力也不够强,有时只能定性推理。而人工智能的应用,可以提升其生存能力,包括航天器的自主检修能力、故障排除能力、定位能力等。对于航天器的轨道设计,自动化网络智能预先对故障检测的定位等设置好,用编程进行控制。随着航天测控技术要求的不断提升,传统的编程控制已经不能满足当代的应用需求,若不向智能化测控技术进行靠拢,其航天测绘中的数据与通信的可靠性与有效性都会受到不同程度的影响,导致接收到的数据不准确、不完整。因此,我国很多专家专门成立研究小组,对航天测控技术进行数据分析,分析其指令的序列、故障检修、定位等信息,将人为的管理逐渐转化为智能化管理。
用人工智能控制航天测控技术,不仅能够提升航天工作的安全系数,还能够减少航天器的使用寿命,降低人工控制费用,减少人工管理精力,具有很明显的优势。第一,人工智能能够代替测控专家进行智能化操作与工作,减少专家的脑力劳动。第二,人工智能中收藏了所有测控专业的各项经验,整合了测控技术的专业知识。第三,人工智能使航天系统离开了人操控的固定模式,提高了操作的变通性和实时性,降低了人为操控影响因素。第四,人工智能使航天机械更容易操控,提升了工作效率。第五,人工智能使航天系统的解决问题能力提升。第六,节约了航天器测控的维持状态的人力和物力,配置速度加快[3]。
5 人工智能在航天测控技术中应用的可行性
人工智能的应用过程,实际上是将人的思维活动进行机械化,使机械具有类似人工的处理问题的能力。人工智能在航天测控技术中的应用,是航天系统模仿测控专家的思维和操作,进行推理判断,使操控程序能够如同专家处理问题的规则一样,及时提供解决措施,根据我国现有条件可知,人工智能在航天测控任务中的应用是可行的。测控系统的功能有数据库和知识库。前者包含遥测数据、指令和故障信息。后者包括用户的接口、知识获取、知识表达等。通过外部输入数据,转换成系统能够识别的信息,进行格式压缩和处理,实现对航天器的控制,利用人工智能实现测控技术控制,减轻了人为负担,也能够提升航天测控能力。
6 航天测控技术任务中的智能化应用分析
我国传统的航天测控技术是采用一般算法实现自动化,该种方式具有封闭性,不利于技术的发展和扩充,故障维护方面也要采用人工方式进行解决,不适用航天事业发展。根据我国航天测控技术现状,我们首先要确定测控设备智能化系统,选择有针对性的部位,融合测控专家的思维,实现人工智能操作[3]。其次,使用智能化系统,还要将专家测控系统嵌入到设备中,再改变原本的算法与结构,使其逐渐适应航天事业的改变与发展。对于智能化测控系统中,可以确定的系统由遥测信息处理系统、通信跟踪系统、故障诊断系统、检测系统等。这些都是容易实现人工智能的部分,能够使遥测信息处理中,清楚航天器的轨道等情况。
7 人工智能在航天测控技术中的应用环境与目标
为了使人工智能在航天测控技术中具有可靠的应用,要遵循一定的应用环境和目标。在开发环境上,要选取经验丰富的建造及测控专家进行系统融合,先借助小型机进行专家智能系统开发应用,再根据需求进行专家系统开发。在目标方面,不仅要开发全面、智能化的航天测控大系统,还要在开发通讯上更加便捷,统一通讯接口,面向广大用户,逐步升级系统故障排除方案。真正实现系统在线实时工作。同时,人工智能在航天测控技术中的最终目标是将地面测控设备小型化,再将其移植到航天事业中,提升卫星的控制能力。
8 结论
人工智能在航天侧控技术中的应用与开发,有利于我国智能化的进一步发展研究,对于提升航天测控设备的可靠性具有重要意义。希望本文的研究,能为提升我国人工智能在航天测控技术中的应用水平提供借鉴。
【参考文献】
中图分类号:TN915.4—34文献标识码:A文章编号:1004—373X(2012)18—0099—03
数据是航天测控系统处理和应用的核心[1]。随着我国航天测控事业的不断发展,整个航天测控系统将发展成为以中继卫星为中心的天基测控网,以陆地测站为中心的陆基测控网和以测量船站为中心的海基测控网三个相对独立的测控系统[2—3],而且各方用户对整个系统提供综合应用服务的需求也不断提高。现有传统的航天测控数据体制,采用约定字段数据包结构的数据处理和应用模式,使得的数据处理及应用都较受限制。为此,构建一个统一化、标准化的数据体制,实现整个测控系统数据的统一标准化处理和应用,将对我国航天测控事业的进一步发展具有重要意义。随着XML(eXtensibleMarkupLanguage)相关协议标准和应用技术的不断成熟,使XML逐渐成为一种处理应用系统间数据交换的标准[4—5]。
1现有传统航天测控数据体制分析
现有传统的航天测控系统采用约定字段数据包结构的数据体制,这种体制在数据处理和应用方面,都有其自身的局限性。
1.1数据处理方面
在以约定字段数据包为核心的数据处理中,数据的生产者需要按照约定的格式填写各个字段,建立完整的数据包并发送给数据的消费者。数据的消费者首先要按照约定的格式,从数据包中分解出各个数据字段,最终得到各个应用数据,然后才能对这些数据进行处理[6]。这种数据处理方式有几个明显的不足:一是数据处理的代码耦合度高,为针对不同任务而进行的软件维护设计将要求对软件代码的重新修改与测试,从而影响了软件的可重用性和模块化;二是不同数据处理单元之间的接口复杂,标准不统一。假设有n个模块要进行信息交互,则会存在Cn2个接口,这使得数据的交互和集成变得十分困难。
此外,传统数据体制对数据的处理不能有效区分实时与非实时数据,实际可用数据处理资源无法实现合理分配,传输带宽的弹性较小。
1.2数据应用方面
数据应用以数据处理为基础。一方面基于约定字段数据包结构的传统数据体制限制了系统对底层数据的处理方式和处理能力,从而影响了数据应用的可实现行和丰富性;另一方面,在传统的航天测控数据体制下,不同测控网之间的数据交互仅仅只解决了基本的数据链路和数据传输的问题,对数据网络层与应用层的设计与处理较少。同时,数据的传输与网络特性单一,使得系统对通信资源的分配和利用力不从心,系统可统一应用的数据范围和综合性较受限制,不利于系统的适应性和拓展性发展。
2基于XML的航天测控数据体制
2.1XML的特点
XML是由W3C(WorldWideWebConsortium)的一种标准,是标准通用标记语言(StandardGeneralizedMarkupLanguage,SGML)的一个简化子集。它具有以下几个传统约定数据包结构数据不具有的显著特点[7—8]:
(1)数据的自描述性,适用于特定领域的数据处理和应用。
(2)结构化的数据模型,为数据显示和处理提供标准的处理方式。
(3)丰富的网络传输特性,可作为性能良好的通信协议。
(4)成熟的XML应用标准与处理技术,如XSL,DOM,SAX,WML,XLink和XPointer等为XML的应用拓展提供了技术支持。
此外,航天测控网的IP化改造,也为XML的技术实现提供了硬件平台。
2.2基于XML的航天测控数据体制
航天测控数据处理按时间的要求不同可分为实时数据处理和非实时数据处理。实时数据处理要求处理速度快,时间短,方法简单,所使用的数据为流数据,大多不会重复使用。非实时数据处理流程多,方法精细、复杂,所使用的数据为积累数据,大多需要重复使用。
中国航天事业的蓬勃发展也给我们的高考命题提供了很好的素材。2008年发射"神舟七号",航天员出舱在太空行走;2011年8月,"嫦娥二号"成功进入了绕"拉格朗日点"的轨道,我国成为世界上第三个造访该点的国家;"神州八号"飞船与"天宫一号"目标飞行器成功实施了首次交会对接等,都给了我们非常生动的情境。下面我就从航天技术的发展历程、载人航天工程七大系统等方面来研究航空航天中的物理问题,具体如下:
一、航空航天技术的发展
人类很早就有了航天的思想,我国古代流传的"嫦娥奔月"、"吴刚砍桂"等传说故事,就是对人类航天理想的生动描绘之一。当然,人类真正实现这种理想是到19世纪末才开始起步的.从那时起,相继涌现出俄国的齐奥尔科夫斯基,美国的戈达德和德国的奥伯特等富于探索精神的航天先驱者。俄国的奥尔科夫斯基最早从理论上证明用多级火箭可克服地球的引力而进入太空,建立了表征多级火箭理想速度的著名的齐奥尔科夫斯基公式。而且他肯定了液体发动机是航天飞行器最适宜的动力装置。美国的戈达德是液体火箭的创始人。他曾指出,要克服地球引力,火箭必须具有每秒79公里的速度。他在1921年开始研制液体火箭发动机,1926年3月16日,他研制的液体火箭飞行成功。德国的奥伯特也是最早的火箭和航天的理论家和实践者。1923年奥伯特论述了火箭飞行的数学理论,并对火箭结构和星际飞行提出了许多新观念。到了1942年10月3日,德国太空协会的青年专家布劳恩领导的航天研究小组,经过艰苦的探索,在总结历次失败教训的基础上,终于发明了再生冷却式燃烧室和燃气舵等新技术。采用这些新技术,终于获得弹道导弹(V-2)的发射成功[1]。从而在工程上实现了航天先驱者的技术思想,取得向地球引力挑战的胜利,并对后来大型火箭的发展起到了继往开来的重大作用。堪称是人类航天发展史上的一个里程碑。
第二次世界大战后,前苏联和美、法、日、加拿大、澳大利亚等国家,都先后发射了探空火箭,创造出发射393公里高度的纪录,获得了许多高层空间的宝贵资料,为发展航天奠定了科学基础。经过10多年的艰苦探索之后,于1957年10月4日,前苏联把世界上第一颗人造地球卫星送入大气层外的运行轨道,开创了人类航天史的新纪元。以后,美、英、法、日和中国、印度等国均成功地发射了人造卫星。自60年代中期开始,卫星的发展便从探索试验转入实用阶段。如今,人类发射的侦察、预警、通信导航、天文气象、海洋监视、测地探矿等应用卫星巳超过2500颗,它们在经济、军事和科研中发挥了非常大的作用。
随着航天技术的发展,人类不断刷新航天纪录.创造出一个个惊人的奇迹。诸如:1961年4月12日开辟了载人航天的成功之路;从1959年开始又开创了对月球的探测和人类登月考察的新篇章;自70年代起,人类对太阳系中的行星先后进行了探测,前苏联和美国并相继在空间建立了航天站;80年代初又发明了能重复使用的航天飞机等等。这些令人鼓舞的成就,对航天技术及其它科学领域的发展都具有深远的历史意义。
二、物理在航空航天中的应用
(一)火箭推进原理
所有航天器的发射都依靠火箭技术,而火箭的飞行是遵循着质点系动量定理和动量守恒的。竖立在发射架上的火箭本身带有燃料和氧化剂,火箭在发射前总动量为零,当点火燃烧后,高温高压的气体不断从火箭尾部的喷管往后喷出,从而使火箭获得向上的巨大推力,克服自身的重力,向太空冲去。下面我们看一下火箭所受的推力大小和火箭的运动速度。
(二)火箭的速度
火箭是依靠连续不断的喷出大量质量m极小的燃料气体才得到连续平稳的加速上行。为了进一步说明火箭在这一过程中获得的速度,先不考虑地球的重力作用,将质量为M的火箭中的燃料燃烧后喷出的燃料气体看成质量为m(远小于M)、相对火箭速度为u的细小弹丸,由于火箭不受任何外力,因此火箭系统总动量守恒,当弹丸以速度u向后喷出,火箭就获得与弹丸等量而方向向前的动量,由于燃料不断燃烧,火箭体的质量就不断减小,因而火箭是一个变质量体系,我们用动量守恒来计算火箭最后得到的速度。
(三)多级火箭
从以上的分析可知,要想航天器上天,至少要获得7.9km/s 的速度,而要到达其他行星或是其他星系,则需要更大的速度。要想火箭得到大的速度,就必须增大燃料气体的喷射速度u和增大质量比M/Me。我们先看燃料气体的喷射速度,它受到诸多因素的影响,一种液态的常规燃料是偏二甲肼( H-N-N-CH3)加四氧化二氮(N2O4),燃料后气体的速度u接近2km/s,另一种非常规的燃料(如液氢加液氧)做推进剂,其喷射速度可达4km/s。同时由于火箭上所装载的仪器设备等的影响质量比M/Me 也有所限制,大约在10到20之间[2]。在这样的条件下,我们可以对一级火箭所能达到的末速度做一估计,其速度必须达到10.8(km/s)这并不是火箭真正能达到的速度,必须考虑地球引力和空气阻力的影响等,所以最终的单级火箭的速度只可能达到7km/s左右,小于第一宇宙速度7.9km/s,无法将航天器送上天。
实际的火箭通常为多级火箭,是用多个单级火箭经串联、并联或串并联(即捆绑式)组合而成的一个飞行整体。
三、载人航天工程七大系统
(一)航天员系统
载人航天首先要有航天员及其上天飞行的保障设施。这是一个航天员为中心的医学和工程相结合的复杂系统。它涉及航天生命科学和航天医学等领域,包括航天员的选拔训练、航天员的医学监督保障、 航天员的一样食品、航天员飞行训练模拟等分系统。
(二)载人飞船系统
飞船是载人航天的核心部分,它为航天员和有效载荷提供必要的生活和工作条件,保证航天员进行有效空间实验和出舱活动,并安全返还地面。
(三)运载火箭系统
运载火箭是把载人飞船安全可靠送入预定轨道的运载工具。包括箭体结构、动力装置等10个分系统,特别是增加了载人所需的故障监测分系统和逃逸救生分系统。
(四)飞船应用系统
载人航天工程最终是为了应用,创造效益,因此飞船应用系统是备受关注的部分。它利用载人飞船的空间试验支持能力,开展对地观测、环境监测、生命科学、材料科学、流体科学等试验,安装有多项任务上百种有效载荷应用设备。
(五)测控通讯系统
当运载火箭发射和载人飞船上天飞行以及返回时,需要靠测控系统通信系统保持天地之间的经常联系,完成飞船遥测参数和电视图像的接受处理,对飞船运行和轨道舱留轨工作的测控管理,这个测控通信系统由北京航天指挥控制中心、陆上地面测控站和海上远望号远洋航天测量船队组成、执行飞船轨道测量、遥控、遥测、火箭安全控制,航天员逃逸控制等任务[3]。
(六)发射场系统
神舟号飞船的发射场选在酒泉卫星发射中心,发射场系统由技术区、发射区、试验指挥区、首区测量和航天员区组成,形成火箭、飞船、航天员从测试到发射以及上升段、返回段测量的一套完整体系。
(七)着陆场系统
载人航天这路着陆场系统包括主、副着陆场,陆上应急援救、海上应急援救、通信测量、航天员医保等部分。
四、结束语
生产实习单位简介: 中国空空导弹研究院,是国家专业从事空空导弹、发射装置、地面检测设备和机载光电设备及其派生型产品研制开发及批量生产的研究发展基地,是国家重点科研院所之一。
研究领域覆盖导弹总体设计与制导、自动控制、无线电、红外、激光、微波、计算机、通讯、精密机械、火箭发动机、信号处理、机械设计与制造等。
作为中国研制高精尖武器的国家队,研究院拥有国内一流的厂房、实验设施,拥有万余台套专用仪器和设备,拥有先进的制造、批量生产能力和现代化试验等手段,拥有着一流的科研队伍,上千名科技人员孜孜不倦的奋战在各个岗位上,完备的管理体系让产品质量得以保障。
五十年来,研究院承担了多项国家重点工程,取得各类科研成果3000多项。研究院高度重视青年科技人才使用和培养。在科研生产重点项目、重点岗位大胆启用青年科技人才,同时还提供多渠道的深造机会。近年,研究院向清华大学、南开大学、北京航空航天大学、北京理工大学、西北工业大学、西安电子科技大学、南京航空航天大学等多所重点院校送培博士、硕士生,并设立了清华大学研究生工作站和清华大学远程教育工作站。并与国外有着广泛的联系,经常派员出国进修、培训、考察和学术交流。
研究院致力于为职工创造最优质的生活环境:具有完善的后勤保障和生活配套设施,单身宿舍、职工食堂、子弟学校、幼儿园、职工医院、职工活动中心、电视台、俱乐部、体育场、游泳池等一应俱全,职工住房条件优越。工作区、生活区整洁规范,环境优美,被授予国家级绿色小区。
导弹维修专业实习周记(二)
实习形式主要为参观和讲座两种形式。
为期十天的实习时间岁虽然不长,但我从中锻炼了自己,并且学到了很多课堂上学不到的东西。也通过十天的实践,使我对国防事业基层单位有了更深的了解。
如果用一句话来总结我的感受,那就是伟大的事业孕育伟大的精神,伟大的精神推动伟大的事业。航空航天工程是当今世界高新技术发展水平的集中体现,是衡量一个国家综合国力的重要标志。在实施航空航天工程的进程中,中国航天人牢记党和人民的重托,满怀为国争光的雄心壮志,自强不息,顽强拼搏,团结协作,开拓创新,取得了一个又一个辉煌成果,也铸就了特别能吃苦、特别能战斗、特别能攻关、特别能奉献的载人航天精神。这是以爱国主义为核心的伟大民族精神和以改革创新为核心的时代精神的生动体现,是井冈山精神、延安精神、两弹一星精神、九八抗洪精神、抗击非典精神的光荣传承,是我们党、国家、军队和人民的宝贵精神财富,值得全国人民认真学习和大力弘扬。
导弹维修专业实习周记(三)
在实习过程中,从空导院的每一位成员身上我能深切的体会到航空航天人对工作的严谨认真,对航空航天事业的无私奉献。
作为航空航天的人才需要艰苦奋斗的精神。历尽千难成伟业,人间万事出艰辛。我国航空航天工程是在世界航天大国已经发展几十年后起步的。为了缩小差距,迎头赶上,航天工程开始实施就明确提出,要坚持做到起步晚、起点高,投入少、效益高,项目少、水平高,从总体上体现中国特色和技术进步,走跨越式发展的道路。中国航天人始终以人民利益为最高利益,以苦为荣,以苦为乐,常年超负荷工作,默默承受着常人难以承受的困难和压力。载人航天工程的成功实践告诉我们,无论过去、现在还是将来,艰苦奋斗永远是我们战胜一切困难、夺取事业胜利的重要法宝。只有以艰苦奋斗精神作支撑,我们的民族才能自立自强,我们的国家才能发展进步,我们的各项事业才能永葆生机活力。
作为航空航天的人才需要勇于攻坚的精神。航天工程是中国航天领域迄今规模最庞大、系统最复杂、技术难度大、质量可靠性安全性要求最高和极具风险性的一项重点工程。这项空前复杂的工程在比较短的时间里不断取得历史性突破,一个极其重要的原因在于,中国航天人敢于攻坚、勇于创新。从试验室到各生产企业,从大漠深处的航天发射场到浩瀚三大洋上的远望号测量船,到处留下了航天人攻坚的足迹,洒下了航天人登攀的汗水。他们知难而进,顽强拼搏,在重重困难面前百折不挠,在道道难关面前决不退缩,以惊人的毅力和勇气战胜了各种难以想象的困难,用满腔热血谱写了共和国航空航天事业的壮丽史诗。
作为航空航天的人才需要开拓创新的精神。我国的航空航天工程,从飞船设计、火箭改进、轨道控制、空间应用到测控通信、航天员训练、发射场和着陆场等方案论证设计,都瞄准世界先进技术,确保工程一起步就有强劲的后发优势,关键技术就能与世界先进水平并驾齐驱,局部还有所超越。面对一系列全新领域和尖端课题,科技人员始终不懈探索、敢于超越,攻克了一项又一项关键技术难题,获得了一大批具有自主知识产权的核心技术和生产性关键技术,展示了新时期中国航天人的卓越创新能力。这些重大突破,使我国在一些重要技术领域达到了世界先进水平。中国航天人的成功实践告诉我们,一定要勇于站在世界科技发展的最前列,敢于在一些重要领域和科技前沿创造自主知识产权,大力提高核心竞争力,努力在世界高新技术领域占有一席之地。
作为航空航天的人才需要无私奉献的精神。我国载人航天事业的建设者,是一支具有光荣传统、建立了卓越功勋的团队。中国航天人勇敢地肩负起攀登航天科技高峰的神圣使命,为了祖国的航天事业,淡泊名利,默默奉献。他们献出了青春年华,献出了聪明才智,献出了热血汗水,有的甚至献出了宝贵生命。他们用顽强的意志和杰出的智慧,将一切为了祖国,一切为了成功写在了浩瀚无垠的太空中。老一代航天人甘当人梯,新一代航天人茁壮成长。一大批能够站在世界科技前沿、勇于创新的高素质人才,为我国航空航天事业实现新的突破积蓄了强大的发展后劲。
导弹维修专业实习周记(四)
在这一周时间里,我根据车间领导的安排到喷漆工段实习,在此期间,我学到了许多在课堂中接触不到的知识,同时也发现了工段在现场生产管理中的一些不足之处。
这一工段的主要工作是给系列火箭、**系列导弹及各型号产品借用件、弹头部分、地面设备、工装以及航天服等产品喷涂涂层。生产加工的过程要求十分精密细致,对于喷涂厚度、喷涂遍数、涂层选择、烘干时间和温度等工艺都有各自严格的规定,必须按照图纸、施工和工艺规程的相关规定严格执行,否则就会造成产品的质量问题,甚至是生产中的安全问题。
在人员结构上,喷漆工段由22名员工组成,分为大喷漆和小喷漆两组,设一名工段长和两名组长承担管理和技术指导工作,设一名收发员承担工段的文职工作,另有16名技术工人,1名返聘人员和2名临时工。此外,质量处派遣两名工作人员常驻工段负责两个小组的产品检验工作。
这样的人员构成从理论的角度看是比较合理的,二级管理实现了一定程度上的分权,外部监督机制也能进一步保证产品的质量,再加上工段安排经验丰富的老师傅指导新员工的措施也可以使得人才得以快速的成长,长时间积累下来的宝贵工作经验也能得以传承。
中图分类号:TM938 文献标识码:B
The Circuit Design of LED Lattice Screen Driven by CH451
GE Chao1, WANG Lei2
(1. College of Information Hebei Polytechnic University, Tangshan Hebei 063009,China;
2. Department of Information Engineering Tangshan College, Tangshan Hebei 063009,China)
Abstract: 64-bit LED lattice or 8-bit digital tube can be driven dynamically by CH451. The chip can easily be adopted by 1 line or cascade of 4-wire serial interface to exchange data with the SCM. It has the characteristic of fast speed, small power consumption and simple operation. The characteristic and the using method of CH451 were introduced, and the examples of hardware and software design were given.
Keywords:LED lattice; serial interface; single chip microcomputer
引 言
LED点阵显示是集微电子技术、计算机技术、信息处理技术于一体的新型显示方式,由于其具有寿命长、动态范围广、工作稳定可靠、低功耗和响应快速等优点,成为众多显示媒体中的佼佼者,是户外显示的理想选择。用CH451芯片驱动LED点阵有以下特点:速度快、功耗小、动态显示扫描控制、直接驱动64位LED点阵,并可以软件控制LED的亮度,以减小功耗。CH451可以通过1线或者可以级联的4线串行接口与单片机等控制器交换数据。CH451的串行接口是由硬件实现的,控制器可以频繁地通过串行接口进行高速操作,而绝对不会降低CH451的工作效率。用它设计的电路,不仅软硬件设计简单,而且功耗低、响应速度快、驱动能力强、占用的I/O口线较少,是一种性价比高、应用灵活的设计方案。
1 CH451的使用说明
CH451内部具有8个8位的数据寄存器,用于保存8个字数据,分别对应于CH451所驱动的8组、每组8个发光二极管,并且支持数据寄存器中的字数据左移、右移、左循环、右循环,支持各数码管的独立闪烁控制,在字数据左右移动或者左右循环移动的过程中,闪烁控制的属性不受影响。CH451具有硬件实现的高速4 线串行接口,包括4 根信号线:串行数据输入线DIN、串行数据时钟线DCLK、串行数据加载线LOAD、串行数据输出线DOUT。DIN 用于提供串行数据,高电平表示位数据1,低电平表示位数据0,串行数据输入的顺序是低位在前,高位在后;DCLK 用于提供串行时钟,CH451 在其上升沿从DIN 输入数据,在其下降沿从DOUT输出数据。CH451 内部具有12 位移位寄存器,在DCLK 的上升沿,DIN 上的位数据被移入移位寄存器的最高位寄存器,以此类推,原次低位数据移入最低位寄存器,在该上升沿后的第一个下降沿,原次低位数据从DOUT 输出。CH451 允许DCLK 引脚的串行时钟频率大于10MHz,从而可以实现高速串行输入输出;LOAD 用于加载串行数据,CH451 在其上升沿加载移位寄存器中的12 位数据,作为操作命令分析并处理。CH451可以动态驱动8×8的LED点阵,点阵的所有列通过串接的限流电阻R1 连接CH451的列驱动引脚SEG0~7,点阵的所有行分别由CH451的DIG0~7引脚进行驱动。串接限流电阻R1 的阻值越大则段驱动电流越小,数码管的显示亮度越低。R1 的阻值一般在60~400Ω之间,在其它条件相同的情况下,应该优先选择较大的阻值。
2 软硬件设计实例
2.1 硬件电路
P1口的P1.5、P1.6、P1.7用来控制LED点阵的显示,分别接到LOAD、DIN和DCLK脚。4个8×8 LED阵列组成16×16的点阵屏模块,如果要显示一个汉字,只要将32字节的点阵数据通过8次48位的加载字数据命令送给CH451就可以了。由于是4个CH451 级联,所以每个操作命令都必须是48 位数据,最后由LOAD 信号线输出上升沿通知所有的CH451加载各自的命令数据。
2.2 显示驱动程序
定义数组存放显示数据,CPU复位后,调用CH451_Write函数对CH451进行写命令数据操作。
写12bit控制字函数:
void CH451_Write(unsigned short cmd)
{unsigned char i;
CH452_LOAD_CLR;//命令开始,LOAD=0
for(i=0;i!=12;i++) //送入12位数据,低位在前,
{CH452_DCLK_CLR;
CH452_DIN=cmd&1;//“&”按位左移
CH452_DCLK_SET; //上升沿有效
cmd=cmd>>1;//“>>”按位右移
}
CH452_LOAD_SET; //加载数据,LOAD上升沿
}
3 结 论
从以上例子可以看出,用CH451设计LED点阵驱动电路,硬件和软件的设计都不存在复杂的技术问题,特别是软件设计。因此,在I/O口线较为紧张的情况下,这不失为一种解决方案,且具有很好的性价比。
参考文献
[1] 王福瑞. 单片微机测控系统设计大全[M]. 北京:北京航空航天大学出版社,2001.
[2] 李 华. MCS-51 系列单片机实用接口技术[M]. 北京:北京航空航天大学出版社,1999.
[3] 何立民. 单片机应用技术选编[M]. 北京:北京航空航天大学出版社,1999.